in

Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinctions risk. Nat. Commun. 9, 4621 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

    Google Scholar 

  • Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Schuldt, A. et al. Biodiversity across trophic levels drive multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 211–220 (2020).

    Google Scholar 

  • Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).

    PubMed 

    Google Scholar 

  • Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).

    PubMed 

    Google Scholar 

  • Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).

    PubMed 

    Google Scholar 

  • Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Moi, D. A. et al. Regime shifts in a shallow lake over 12 years: consequences for taxonomic and functional diversities, and ecosystem multifunctionality. J. Anim. Ecol. 91, 551–565 (2022).

    PubMed 

    Google Scholar 

  • Moi, D. A. et al. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct. Ecol. 35, 942–954 (2021).

    CAS 

    Google Scholar 

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

    Google Scholar 

  • Li, F. et al. Human activitiesʼ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol. 26, 6867–6879 (2020).

    Google Scholar 

  • Enquist, B. J. et al. The megabiota are disproportionately importante for biosphere functioning. Nat. Commun. 11, 699 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol. Hydrobiol. 4, 255–268 (2004).

    Google Scholar 

  • Chiaravalloti, R. M., Homewood, K. & Erikson, K. Sustainability and land tenure: who owns the floodplain in the Pantanal, Brazil? Land Use Policy 64, 511–524 (2017).

    Google Scholar 

  • Pelicice, F. M. et al. Large-scale degradation of the Tocantins–Araguaia River Basin. Environ. Manag. 68, 445–452 (2021).

    Google Scholar 

  • Malekmohammadi, B. & Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293–303 (2017).

    Google Scholar 

  • McIntyre, P. B. et al. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2006).

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Google Scholar 

  • Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2020).

    PubMed 

    Google Scholar 

  • Bridgewater, P. & Kim, R. E. The Ramsar conservation on wetlands at 50. Nat. Ecol. Evol. 5, 268–270 (2020).

    Google Scholar 

  • Romero, G. Q. et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 17, 20210137 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lansac-Tôha, F. M. et al. Scale-depedent patterns of metacommunity structuring in aquatic organisms across floodplain systems. J. Biogeogr. 48, 872–885 (2021).

    Google Scholar 

  • Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).

    Google Scholar 

  • Weiss, K. C. B. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).

    Google Scholar 

  • Laliberté, E. & Legendre, R. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 

    Google Scholar 

  • Mackereth, F. J. H, Heron, J & Talling, J. F. Water Analysis: Some Revised Methods for Limnologists. Publication No. 36 (Freshwater Biological Association, 1978).

  • Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwaters (Blackwell Scientific Publications, 1978).

  • Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).

    Google Scholar 

  • Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankt. Res. 25, 1331–1346 (2003).

    Google Scholar 

  • Froese, R. & Pauly, D. FishBase (2018); www.fishbase.org

  • Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora1. Limnol. Oceanogr. 25, 943–948 (1980).

    Google Scholar 

  • Manning, P. et al. Redifining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    PubMed 

    Google Scholar 

  • Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. R version 2.0–12 https://rspatial.org/raster (2012).

  • World Urbanization Prospects: The 2020 Revision: Highlights (United Nations, 2020).

  • Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshwater Ecosyst. 24, 5–22 (2013).

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R version 3.1.137 https://CRAN.Rproject.org/package=nlme (2018).

  • K. Barton, MuMIn: Model selection and model averaging based on information criteria (AICc and alike). R version 1–1 https://CRAN.R-project.org/package=MuMIn (2014).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  • Schielzeth, H. Simple means to improve the interpretability ofregression coefficients. Meth. Ecol. Evol. 1, 103–113 (2010).

    Google Scholar 

  • Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions (Sage Publications, 1991).

  • Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2015).

    Google Scholar 

  • Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).

    Google Scholar 

  • R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    A better way to quantify radiation damage in materials

    Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities