in

Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities

  • Wei, Z. L., Liu, X., Feng, T. & Chang, Y. Q. Novel and conserved micrornas in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int. J. Biol. Sci. 7, 180 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sun, Z. H., Zhang, J., Zhang, W. J. & Chang, Y. Q. Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene 698, 72–81 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Willoughby, L. News feature: Can predators have a big impact on carbon emissions calculations?. PNAS 115(10), 2260–2263 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ling, S. D., Kriegisch, N., Woolley, B. & Reeves, S. E. Density dependent feedbacks, hysteresis, and demography of overgrazing sea urchins. Ecology 100(2), e02577 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cirino, P., Ciaravolo, M., Paglialonga, A. & Toscano, A. Long term maintenance of the sea urchin Paracentrotus lividus in culture. Aquac. Rep. 7, 27–33 (2017).

    Article 

    Google Scholar 

  • Brundu, G., Farina, S. & Domenici, P. Going back into the wild: The behavioural effects of raising sea urchins in captivity. Conserv. Physiol. 8(1), 015 (2020).

    Article 

    Google Scholar 

  • Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, 2004).

    Google Scholar 

  • Abelson, A. & Denny, M. Settlement of marine organisms in flow. Annu. Rev. Ecol. Syst. 28(1), 317–339 (1997).

    Article 

    Google Scholar 

  • Boxshall, A. J. The importance of flow and settlement cues to larvae of the abalone, Haliotis rufescens Swainson. J. Exp. Mar. Biol. Ecol. 254(2), 143–167 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities: Water flow mediates rarity and diversity. Ecol. Lett. 14(1), 63–68 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Fischer-Rousseau, L., Chu, K. P. & Cloutier, R. Developmental plasticity in fish exposed to a water velocity gradient: A complex response. J. Exp. Zool. 314(1), 67–85 (2010).

    Article 

    Google Scholar 

  • Moëzzi, F., Poorbagher, H., Ghadermazi, A., Parvizi, F. & Benam, S. Variation in the shell form of the swanmussel, Anodonta cygnea (Linea, 1876) in response to water current. Int. J. Aquat. Biol. 5(4), 275–281 (2017).

    Google Scholar 

  • Pan, Y. et al. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus. Physiol. Behav. 144, 52–59 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dumont, C. P., Drolet, D., Deschenes, I. & Himmelman, J. H. Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis. Anim. Behav. 73(6), 979–986 (2007).

    Article 

    Google Scholar 

  • Li, X. J. et al. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. Fish Shellfish Immunol. 86, 1169–1176 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kirby-Smith, W. W. Growth of the bay scallop: The influence of experimental water currents. J. Exp. Mar. Biol. Ecol. 8(1), 7–18 (1972).

    Article 

    Google Scholar 

  • Morse, B. L. & Hunt, H. L. Effect of unidirectional water currents on displacement behaviour of the green sea urchin Strongylocentrous droebachiensis. J. Mar. Biol. Assoc. U. K. 93(7), 1923–1928 (2013).

    Article 

    Google Scholar 

  • Shi, D. T. et al. Effects of flow velocity on fitness related behaviours of the sea urchin Mesocentrotus nudus: New information on stock enhancement. J. Mar. Biol. Assoc. U. K. 100(6), 963–967 (2020).

    CAS 
    Article 

    Google Scholar 

  • Agca, C., Elhajj, M. C., Klein, W. H. & Venuti, J. M. Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J. Comp. Neurol. 519(17), 3566–3579 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Cohen-Rengifo, M., Moureaux, C., Dubois, P. & Flammang, P. Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation to test morphology and tube foot mechanical properties. Mar. Biol. 164(4), 79 (2017).

    Article 

    Google Scholar 

  • Tuya, F., Cisneros-Aguirre, J., Ortega-Borges, L. & Haroun, R. J. Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow induced forces. Estuar. Coast. Shelf Sci. 73, 481–488 (2007).

    ADS 
    Article 

    Google Scholar 

  • Stewart, H. L. & Britton-Simmons, K. H. Streamlining behaviour of the red urchin Strongylocentrotus franciscanus in response to flow. J. Exp. Biol. 214(16), 2655–2659 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Toubarro, D. et al. Cloning, characterization, and expression levels of the nectin gene from the tube feet of the sea urchin Paracentrotus Lividus. Mar. Biotechnol. 18(3), 372–383 (2016).

    CAS 
    Article 

    Google Scholar 

  • Milan, M. et al. Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: Genomic tools for environmental monitoring. BMC Genom. 12, 234 (2011).

    CAS 
    Article 

    Google Scholar 

  • Evans, T. G. et al. Ocean acidification research in the ‘post-genomic’ era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comp. Biochem. Phys. A. 185, 33–42 (2015).

    CAS 
    Article 

    Google Scholar 

  • Wang, L. K., Feng, Z. X., Wang, X. & Zhang, X. G. DEGseq: An R package for identifying differentially expressed genes from RNA-Seq Data. Bioinformatics 26(1), 136–138 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Ding, J. Y. et al. Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: New insights into the stock enhancement. Aquaculture 519, 734873 (2019).

    Article 

    Google Scholar 

  • Shi, D. T., Zhao, C., Yin, D. H., Chen, Y. & Chang, Y. Q. Effects of velocity on behaviors and growth of the sea urchin Mesocentrotus nudus. Acta Ecol. Sin. 42(10) (2022) (in Chinese with an English abstract).

  • Zhao, C. et al. Transcriptomes reveal genes involved in covering and sheltering behaviors of the sea urchin Strongylocentrotus intermedius exposed to UV-B radiation. Ecotoxicol. Environ. Saf. 167, 236–241 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhan, Y. Y. et al. The impact of chronic heat stress on the growth, survival, feeding, and differential gene expression in the sea urchin Strongylocentrotus intermedius. Front. Genet. 10, 301 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hao, P. F. et al. Gene expression patterns of sea urchins (Strongylocentrotus intermedius) exposed to different combinations of temperature and hypoxia. Comp. Biochem. Physiol. Part D. Cenom. Proteom. 41, 100953 (2022).

    CAS 

    Google Scholar 

  • Albarano, L. et al. PAHs and PCBs affect functionally intercorrelated genes in the sea urchin Paracentrotus lividus embryos. Int. J. Mol. Sci. 22, 12498 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Láruson, A. J., Coppard, S. E., Pespeni, M. H. & Reed, F. A. Gene expression across tissues, sex, and life stages in the sea urchin Tripneustes gratilla [Toxopneustidae, Odontophora, Camarodonta]. Mar. Genom. 41, 12–18 (2018).

    Article 

    Google Scholar 

  • Xu, Y. Q. Effects of flow velocity on growth, nonspecific immunity and fatty acid composition of juvenile Rhynchocypris lagowskii. Dalian Ocean University, Master Thesis (2020).

  • Ogata, H. Y. & Oku, H. Effects of water velocity on growth performance of juvenile Japanese flounder Paralichthys olivaceus. J. World Aquac. Soc. 31(2), 225–231 (2000).

    Article 

    Google Scholar 

  • Gao, J., Wang, Y. B., Liu, J. Y., Guo, Y. L. & Fu, S. Y. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity. South China Fish. Sci. 18(1), 107–117 (2022).

    Google Scholar 

  • Arai, M., Otsu, K., Maclennan, D. H. & Periasamy, M. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am. J. Physiol. 262, C614–C620 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gallagher, P. G., Romana, M., Tse, W. T., Lux, S. E. & Forge, B. G. The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 96(3), 1136–1143 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gallagher, P. G. & Forget, B. G. An alternate promoter directs expression of a truncated, muscle specific isoform of the human Ankyrin-1 gene. J. Biol. Chem. 273(3), 1339–1348 (1997).

    Article 

    Google Scholar 

  • Yi, Y., Li, Z. & Kuipers, O. P. Plant–microbe interaction: transcriptional response of bacillus mycoides to potato root exudates. J. Vis. Exp. 137, e57606 (2018).

    Google Scholar 

  • Sun, X. et al. Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics. BMC Genom. 19, 1–13 (2018).

    CAS 
    Article 

    Google Scholar 

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29(7), 644–652 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 25–34 (2009).

    Article 
    CAS 

    Google Scholar 

  • Tatusov, R. T., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Nucleic Acids Res. 28, 33–36 (1997).

    Article 

    Google Scholar 

  • Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511–515 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turbeville, J., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Vergara-Amado, J., Silva, A. X., Manzi, C., Nespolo, R. F. & Cárdenas, L. Differential expression of stress candidate genes for thermal tolerance in the sea urchin Loxechinus albus. J. Therm. Biol. 68, 104–109 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔCT method. Methods 25(4), 402–408 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Climate change did not alter the effects of Bt maize on soil Collembola in northeast China

    Making hydropower plants more sustainable