IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).
Google Scholar
Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).
Google Scholar
Körner, C. Alpine Plant Life (Springer International Publishing, 2021).
Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).
Google Scholar
Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
Google Scholar
Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).
Google Scholar
AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (2021).
Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
Google Scholar
Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).
Google Scholar
Zhang, W. et al. Self‐amplifying feedbacks accelerate greening and warming of the arctic. Geophys. Res. Lett. 45, 7102–7111 (2018).
Google Scholar
Körner, C. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41, 197–206 (2012).
Google Scholar
Pellizzari, E. et al. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent. Glob. Change Biol. 23, 3169–3180 (2017).
Google Scholar
Dobbert, S., Pape, R. & Löffler, J. How does spatial heterogeneity affect inter‐ and intraspecific growth patterns in tundra shrubs. J. Ecol. 7, 1 (2021).
Ackerman, D., Griffin, D., Hobbie, S. E. & Finlay, J. C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Change Biol. 23, 4294–4302 (2017).
Google Scholar
Stendel, M., Christensen, J. H. & Petersen, D. in High-Arctic Ecosystem Dynamics in a Changing Climate (eds. Meltofte, H.) 13–43 (Elsevier, 2008).
Prislan, P. et al. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Front. Plant Sci. 7, 1923 (2016).
Google Scholar
Gazol, A. & Camarero, J. J. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecol. 213, 1687–1698 (2012).
Google Scholar
Olano, J. M., Almería, I., Eugenio, M. & Arx, G. V. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 27, 1295–1303 (2013).
Google Scholar
Voltas, J. et al. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell Environ. 36, 1435–1448 (2013).
Google Scholar
Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).
Google Scholar
Castagneri, D., Battipaglia, G., Arx, G. V., Pacheco, A. & Carrer, M. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol. 38, 1098–1109 (2018).
Google Scholar
Cabon, A., Peters, R. L., Fonti, P., Martínez-Vilalta, J. & Cáceres, M. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. N. Phytologist 226, 1325–1340 (2020).
Google Scholar
Camarero, J. J., Valeriano, C., Gazol, A., Colangelo, M. & Sánchez-Salguero, R. Climate differently impacts the growth of coexisting trees and shrubs under semi-arid mediterranean conditions. Forests 12, 381 (2021).
Google Scholar
García-Cervigón Morales, A. I., Olano Mendoza, J. M., Eugenio Gozalbo, M. & Camarero Martínez, J. J. Arboreal and prostrate conifers coexisting in Mediterranean high mountains differ in their climatic responses. Dendrochronologia 30, 279–286 (2012).
Google Scholar
Oladi, R., Emaminasab, M. & Eckstein, D. The dendroecological potential of shrubs in north Iranian semi-deserts. Dendrochronologia 44, 94–102 (2017).
Google Scholar
McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evolution 5, 243–254 (2015).
Google Scholar
Drew, D. M., Downes, G. M. & Battaglia, M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J. Theor. Biol. 264, 395–406 (2010).
Google Scholar
Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytologist 210, 459–470 (2016).
Google Scholar
Rathgeber, C. B. K., Cuny, H. E. & Fonti, P. Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7, 734 (2016).
Google Scholar
Körner, C. Carbon limitation in trees. J. Ecol. 91, 4–17 (2003).
Google Scholar
Thompson, J. D. Plant Evolution in the Mediterranean (Oxford University Press, 2005).
Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22, 3804–3813 (2016).
Google Scholar
Löffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).
Google Scholar
Zweifel, R. et al. Why trees grow at night. N. Phytologist 231, 2174–2185 (2021).
Google Scholar
González-Rodríguez, Á. M. et al. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot. 127, 97–108 (2017).
Google Scholar
Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage. N. Phytologist 211, 839–849 (2016).
Google Scholar
Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).
Google Scholar
Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).
Google Scholar
Mitrakos, K. A Theory for Mediterranean Plant Life (Acta oecologica, 1980).
Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. N. Phytologist 185, 471–480 (2010).
Google Scholar
Alday, J. G., Camarero, J. J., Revilla, J. & Resco de Dios, V. Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species. Tree Physiol. 40, 956–968 (2020).
Google Scholar
Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).
Google Scholar
Descals, A. et al. Soil thawing regulates the spring growth onset in tundra and alpine biomes. Sci. total Environ. 742, 140637 (2020).
Google Scholar
Morgner, E., Elberling, B., Strebel, D. & Cooper, E. J. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29, 58–74 (2010).
Google Scholar
Weijers, S., Beckers, N. & Löffler, J. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 9, e02328 (2018).
Google Scholar
Bret-Harte, M. S. et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18–32 (2001).
Google Scholar
Wang, Y. et al. Warming‐induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography 44, 1631–1641 (2021).
Google Scholar
Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).
Google Scholar
Francon, L., Corona, C., Till-Bottraud, I., Carlson, B. Z. & Stoffel, M. Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades. Am. J. Bot. 107, 607–617 (2020).
Google Scholar
Lu, X., Liang, E., Babst, F., Camarero, J. J. & Büntgen, U. Warming-induced tipping points of Arctic and alpine shrub recruitment. Proc. Natl Acad. Sci. USA 119, e2118120119 (2022).
Google Scholar
Sabater, A. M. et al. Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 13, e2190 (2019).
Larson, P. R. The indirect effect of photoperiod on tracheid diameter in Pinus resinosa. Am. J. Bot. 49, 132–137 (1962).
Google Scholar
Jackson, S. D. Plant responses to photoperiod. N. Phytologist 181, 517–531 (2009).
Google Scholar
Waisel, Y. & Fahn, A. The effects of environment on wood formation and cambial activity in Robina Pseudacacia L. N. Phytologist 64, 436 (1965).
Google Scholar
Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).
Google Scholar
Gričar, J. et al. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant Sci. 6, 730 (2015).
Google Scholar
Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).
Google Scholar
Oberhuber, W., Sehrt, M. & Kitz, F. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol. 290, 108026 (2020).
Google Scholar
Sonntag, D. Important new values of the physical constants of 1986, vapour pressure formulations based on ITS-90, and psychrometer formulae. Z. f.ür. Meteorologie 70, 340–344 (1990).
Löffler, J., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of arctic-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in central Norway. Erdkunde 75, DP311201 (2021).
Löffler, J., Albrecht, E. C., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of Mediterranean-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in the Sierra Nevada, Spain (LTAER-ES). Erdkunde 76, DP311202 (2022).
Google Scholar
R Core Team. A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).
Wood, S. N. Generalized Additive Models. An introduction with R (2nd edition) (Chapman & Hall/CRC, 2017).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73, 3–36 (2011).
Google Scholar
Byun, J. G. et al. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 6, 380–392 (2013).
Google Scholar
Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Vegetation Sci. 2, 587–602 (1991).
Google Scholar
Gasparrini, A., Scheipl, F., Armstrong, B. & Kenward, M. G. A penalized framework for distributed lag non-linear models. Biometrics 73, 938–948 (2017).
Google Scholar
Scott, E. R., Uriarte, M. & Bruna, E. M. Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. https://doi.org/10.1101/2021.06.28.450186 (2021).
Almon, S. The distributed lag between capital appropriations and expenditures. Econometrica 33, 178 (1965).
Google Scholar
Vanoni, M., Bugmann, H., Nötzli, M. & Bigler, C. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. For. Ecol. Manag. 382, 51–63 (2016).
Google Scholar
Pukienė, R., Vitas, A., Kažys, J. & Rimkus, E. Four-decadal series of dendrometer measurements reveals trends in Pinus sylvestris L. inter- and intra-annual growth response to climatic conditions. Can. J. For. Res. 51, 445–454 (2020).
Google Scholar
Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).
Google Scholar
Gasparrini, A. Distributed lag linear and non-linear models in R: the package dlnm. J. Stat. Softw. 43, https://doi.org/10.18637/jss.v043.i08 (2011).
Kartverket. Terrain Map. https://www.norgeskart.no/ (Norwegian Mapping Authority, 2008).
Autonomous body National Center for Geographic Information (CNIG). Digital Terrain Model – DTM25. http://centrodedescargas.cnig.es/ (2009).
Source: Ecology - nature.com