Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240 (1998).
Google Scholar
Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science. 291, 481–484 (2001).
Google Scholar
Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).
Google Scholar
Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 53, 1–34 (2015).
Google Scholar
Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).
Google Scholar
Sayers, M. J., Fahnenstiel, G. L., Shuchman, R. A. & Bosse, K. R. A new method to estimate global freshwater phytoplankton carbon fixation using satellite remote sensing: initial results. Int. J. Remote Sens. 42, 3708–3730 (2021).
Google Scholar
Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).
Google Scholar
Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem. Cycles 24, GB3016 (2010).
Google Scholar
Holt, J. et al. Modelling the global coastal ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 939–951 (2009).
Google Scholar
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).
Google Scholar
Saba, V. S. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).
Google Scholar
Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles 24, 1–8 (2010).
Google Scholar
Charpy-Roubaud, C. & Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).
Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography. 31(7), 1422–1439, https://doi.org/10.1111/geb.13515 (2022).
Duggins, D. O. & Estes, J. A. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science. 245, 170–173 (1989).
Google Scholar
Dunton, K. H. & Schell, D. M. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: 13C evidence. Mar. Biol. 625, 615–625 (1987).
Google Scholar
Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).
Google Scholar
Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).
Google Scholar
Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).
Google Scholar
Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum belt. Nat. Commun. 12, 2556 (2021).
Google Scholar
Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci. 4 (2017).
Kanwisher, J. W. Photosynthesis and respiration in some seaweeds. in Some contemporary studies in marine science:: a collection of original scientific papers presented to Dr. S.M. Marshall, O.B.E., F.R.S. in recognition of her contribution with the late Dr. A.P. Orr to marine biological progress (eds. Barnes, H. & Marshall, S. M.) 407 (Allen & Unwin, 1966).
Blinks, L. R. Photosynthesis and productivity of littoral marine algae. J. Mar. Res. 14, 363–373 (1955).
Printz, H. Seasonal growth and production of dry matter in Ascophyllum nodosum. Avh. Utg. Av Det Nor. Videnskaps-akademi i Oslo. I. Mat. Klasse 4, 1–15 (1950).
Rassweiler, A., Reed, D. C., Harrer, S. L. & Nelson, J. C. Improved estimates of net primary production, growth and standing crop of Macrosystis pryifera in Southern California. Ecology 99, 2132 (2018).
Google Scholar
Littler, M. M. & Arnold, K. E. Primary Productivity of Marine Macroalgal Functional-Form Groups From Southwestern North America. Journal of Phycology 18, 307–311 (1982).
Google Scholar
Krause-Jensen, D. et al. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob. Chang. Biol. 18, 2981–2994 (2012).
Google Scholar
Smale, D. A. et al. Environmental factors influencing primary productivity of the forest – forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).
Google Scholar
Pessarrodona, A. et al. Global seaweed productivity. Science Advances https://doi.org/10.1126/sciadv.abn2465 (2022) (in press).
Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).
Google Scholar
Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).
Google Scholar
Tebbett, S. B. & Bellwood, D. R. Algal turf productivity on coral reefs: A meta-analysis. Mar. Environ. Res. 168, 105311 (2021).
Google Scholar
Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. Status and trends for the world’s kelp forests. in World Seas: An Environmental Evaluation: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) 57–78, https://doi.org/10.1016/B978-0-12-805052-1.00003-6 (Academic Press, 2019).
Gómez, I. et al. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot. Mar. 52, 593–608 (2009).
Google Scholar
Kindig, A. C. & Littler, M. M. Growth and primary productivity of marine macrophytes exposed to domestic sewage effluents. Mar. Environ. Res. 3, 81–100 (1980).
Google Scholar
Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: The significance of grazing. Aquat. Bot. 3, 357–390 (1977).
Google Scholar
Hatcher, B. G. Reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).
Google Scholar
Odum, H. T. & Odum, E. P. Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).
Google Scholar
Owen, D. P., Long, M. H., Fitt, W. K. & Hopkinson, B. M. Taxon-specific primary production rates on coral reefs in the Florida Keys. Limnol. Oceanogr. 1–14, https://doi.org/10.1002/lno.11627 (2020).
Attard, K. M. et al. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: An eddy covariance study. Mar. Ecol. Prog. Ser. 535, 99–115 (2015).
Google Scholar
Attard, K. M. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).
Google Scholar
Rohatgi, A. WebPlotDigitizer. (2019).
Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms – A global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 64, 334–340 (2010).
Google Scholar
Thom, R. M. Spatial and Temporal Patterns of Fucus distichus ssp. edentatus (de la Pyl.) Pow. (Phaeophyceae: Fucales) in Central Puget Sound. Bot. Mar. 26, 471–486 (1983).
Google Scholar
Johnston, C. S., Jones, R. G. & Hunter, D. R. A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer wissenschaftliche Meeresuntersuchungen 30, 527–545 (1977).
Google Scholar
Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Chang. Biol. 1–17, https://doi.org/10.1111/gcb.15837 (2021).
Randall, J., Wotherspoon, S., Ross, J., Hermand, J. & Johnson, C. An in situ study of production from diel oxygen modelling, oxygen exchange, and electron transport rate in the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 615, 51–65 (2019).
Google Scholar
Rodgers, K. L., Rees, T. A. V. & Shears, N. T. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528, 101–115 (2015).
Google Scholar
Sanderson, J. C. Subtidal Macroalgal Studies in East and South Eastern Tasmanian Coastal Waters. (University of Tasmania, 1990).
Miller, R. J., Reed, D. C. & Brzezinski, M. A. Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. 388, 1–11 (2009).
Google Scholar
Pessarrodona, A. et al. A global dataset of seaweed net primary productivity, Figshare, https://doi.org/10.6084/m9.figshare.14882322 (2021).
Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).
Google Scholar
Lees, D. C., Houghton, J. P., Erickson, D. E., Driskell, W. B. & Boettcher, D. E. Ecological studies of intertidal and shallow subtidal habitats in lower Cook Inlet, Alaska. (1980).
Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).
Google Scholar
Pedersen, M. F., Nejrup, L. B., Fredriksen, S., Christie, H. C. & Norderhaug, K. M. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 451, 45–60 (2012).
Google Scholar
Kain, J. M. The biology of Laminaria hyperborea X. The effect of depth on some populations. J. Mar. Biol. Assoc. United Kingdom 57, 587–607 (1977).
Google Scholar
Yatsuya, K., Nishigaki, T., Douke, A., Itani, M. & Wada, Y. Annual net productions of sargassacean species in coastal areas with different environmental characteristics in Kyoto Prefecture, the Sea of Japan. Nippon Suisan Gakkaishi 73, 880–890 (2007).
Google Scholar
Carter, A. R. & Simons, R. H. Regrowth and Production Capacity of Gelidium pristoides (Gelidiales, Rhodophyta) under Various Harvesting Regimes at Port Alfred, South Africa. Bot. Mar. 30, 227–232 (1987).
Google Scholar
Santelices, B., Vásquez, J., Ohme, U. & Fonck, E. Managing wild crops of Gracilaria in central Chile. in Eleventh International Seaweed Symposium (eds. Bird, C. J. & Ragan, M. A.) 77–89 (Springer Netherlands, 1984).
Pessarrodona, A., Foggo, A. & Smale, D. A. Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol. 10, 91–104 (2018).
Dunton, K. H. An annual carbon budget for an arctic kelp community. in The Alaskan Beaufort Sea: ecosystems and environments. (eds. Barnes, P. W., Schell, D. & Reimnitz, E.) 311–326 (Academic press, 1984).
Klumpp, D. W. & McKinnon, A. D. Commmunity structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef; dynamics at different spatial scales. Mar. Ecol. Prog. Ser. 86, 77–89 (1992).
Google Scholar
Westphalen, G. & Cheshire, A. C. Quantum efficiency and photosynthetic production of a temperate turf algal community. Aust. J. Bot. 45, 343–349 (1997).
Google Scholar
Morrissey, J. Primary productivity of coral reef benthic macroalgae. Proceedings of the 5th International Coral Reef Congress 77–82 (1985).
Howard, K. L. & Menzies, R. J. Distribution and Production of Sargassum in the Waters off the Carolina Coast. Bot. Mar. 12, 244–254 (1969).
Google Scholar
Weigel, B. L. & Pfister, C. A. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, 1–17 (2020).
Tait, L. W., South, P. M., Lilley, S. A., Thomsen, M. S. & Schiel, D. R. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J. Exp. Mar. Bio. Ecol. 469, 10–17 (2015).
Google Scholar
Rodgers, K. & Shears, N. Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Mar. Ecol. Prog. Ser. 553, 67–79 (2016).
Google Scholar
Source: Ecology - nature.com