in

Over half of known human pathogenic diseases can be aggravated by climate change

  • Pörtner, H. O. et al. Climate Change 2022: Impacts, Adaptation and Vulnerability (IPCC, 2022).

  • Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).

    CAS 
    Article 

    Google Scholar 

  • Smith, K. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (Cambridge Univ. Press, 2014).

  • Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 8, 1062–1071 (2018).

    CAS 
    Article 

    Google Scholar 

  • Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).

    CAS 
    Article 

    Google Scholar 

  • Epstein, P. The ecology of climate change and infectious diseases: comment. Ecology 91, 925–928 (2010).

    Article 

    Google Scholar 

  • IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  • Jaenisch, T. & Patz, J. Assessment of associations between climate and infectious diseases: a comparison of the reports of the Intergovernmental Panel on Climate Change (IPCC), the National Research Council (NRC), and United States Global Change Research Program (USGCRP). Glob. Change Hum. Health 3, 67–72 (2002).

    Article 

    Google Scholar 

  • Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit. Rev. Microbiol. 42, 548–572 (2016).

    Article 

    Google Scholar 

  • Tabachnick, W. J. Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses. Ann. Rev. Virol 29, 125–145 (2016).

    Article 
    CAS 

    Google Scholar 

  • Khasnis, A. A. & Nettleman, M. D. Global warming and infectious disease. Arch. Med. Res. 36, 689–696 (2005).

    Article 

    Google Scholar 

  • McMichael, A. J. Extreme weather events and infectious disease outbreaks. Virulence 6, 543–547 (2015).

    Article 

    Google Scholar 

  • Ahern, M., Kovats, R. S., Wilkinson, P., Few, R. & Matthies, F. Global health impacts of floods: epidemiologic evidence. Epidemiol. Rev. 27, 36–46 (2005).

    Article 

    Google Scholar 

  • Hunter, P. R. Climate change and waterborne and vector‐borne disease. J. Appl. Microbiol. 94, 37–46 (2003).

    Article 

    Google Scholar 

  • Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vector borne diseases. Am. J. Prev. Med. 35, 436–450 (2008).

    Article 

    Google Scholar 

  • Semenza, J. C. et al. Climate change impact assessment of food- and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 42, 857–890 (2012).

    Article 

    Google Scholar 

  • Nichols, G., Lake, I. & Heaviside, C. Climate change and water-related infectious diseases. Atmosphere 9, 385 (2018).

    Article 

    Google Scholar 

  • Cunliffe, J. A proliferation of pathogens through the 20th century. Scand. J. Immunol. 68, 120–128 (2008).

    CAS 
    Article 

    Google Scholar 

  • Cecchi, L. et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 65, 1073–1081 (2010).

    CAS 

    Google Scholar 

  • Demain, J. G. Climate change and the impact on respiratory and allergic disease: 2018. Curr. Allergy Asthma Rep. 18, 22 (2018).

    Article 

    Google Scholar 

  • Andersen, L. K. & Davis, M. D. The effects of the El Niño Southern Oscillation on skin and skin-related diseases: a message from the International Society of Dermatology Climate Change Task Force. Int. J. Dermatol. 54, 1343–1351 (2015).

    Article 

    Google Scholar 

  • Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K. & Fall, R. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. Atmos 98, 12609–12617 (1993).

    Article 

    Google Scholar 

  • Metcalf, C. J. E. & Lessler, J. Opportunities and challenges in modeling emerging infectious diseases. Science 357, 149–152 (2017).

    CAS 
    Article 

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS 
    Article 

    Google Scholar 

  • Nava, A., Shimabukuro, J. S., Chmura, A. A. & Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 58, 393–400 (2017).

    CAS 
    Article 

    Google Scholar 

  • Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).

    CAS 
    Article 

    Google Scholar 

  • Ngongeh, L. A., Idika, I. K. & Ibrahim Shehu, A. R. warming and its impacts on parasitology/entomology. Open Parasitol. J 5, 1–11 (2014).

    Article 

    Google Scholar 

  • LaDeau, S. L., Calder, C. A., Doran, P. J. & Marra, P. P. West Nile virus impacts in American crow populations are associated with human land use and climate. Ecol. Res. 26, 909–916 (2011).

    Article 

    Google Scholar 

  • Gale, P., Drew, T., Phipps, L. P., David, G. & Wooldridge, M. The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J. Appl. Microbiol. 106, 1409–1423 (2009).

    CAS 
    Article 

    Google Scholar 

  • Lancien, J., Muguwa, J., Lannes, C. & Bouvier, J. B. Tsetse and human trypanosomiasis challenge in south eastern Uganda. Int. J. Trop. Insect Sci. 11, 411–416 (1990).

    Article 

    Google Scholar 

  • Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).

    Article 

    Google Scholar 

  • Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).

    Article 

    Google Scholar 

  • Arriaza, B. T., Reinhard, K. J., Araújo, A. G., Orellana, N. C. & Standen, V. G. Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations. Mem. Inst. Oswaldo Cruz 105, 66–72 (2010).

    Article 

    Google Scholar 

  • Kaffenberger, B. H., Shetlar, D., Norton, S. A. & Rosenbach, M. The effect of climate change on skin disease in North America. J. Am. Acad. Dermatol. 76, 140–147 (2017).

    Article 

    Google Scholar 

  • Coates, S. J., Enbiale, W., Davis, M. D. & Andersen, L. K. The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 59, 265–278 (2020).

    Article 

    Google Scholar 

  • Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).

    Article 

    Google Scholar 

  • Nagy, G. J. et al. in Climate Change and Health (ed Leal, W) 475–514 (Springer, 2016).

  • Kontra, J. M. Zombie infections and other infectious disease complications of global warming. J. Lancaster Gen. Hosp. 12, 12–16 (2017).

    Google Scholar 

  • Charron, D., Fleury, M., Lindsay, L. R., Ogden, N. & Schuster, C. J. in Human Health in a Changing Climate (ed Séguin, J) 173–210 (Health Canada, 2008).

  • Butler, C. D. & Harley, D. Primary, secondary and tertiary effects of eco-climatic change: the medical response. Postgrad. Med. J. 86, 230–234 (2010).

    Article 

    Google Scholar 

  • Quarles, W. Global warming means more pathogens. IPM Pract. 35, 1–8 (2017).

    Google Scholar 

  • Patz, J. A., Engelberg, D. & Last, J. The effects of changing weather on public health. Ann. Rev. Public Health 21, 271–307 (2000).

    CAS 
    Article 

    Google Scholar 

  • Yavarian, J., Shafiei-Jandaghi, N. Z. & Mokhtari-Azad, T. Possible viral infections in flood disasters: a review considering 2019 spring floods in Iran. Iran. J. Microbiol. 11, 85–89 (2019).

    Google Scholar 

  • Boxall, A. B. A. et al. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 117, 508–514 (2009).

    CAS 
    Article 

    Google Scholar 

  • Wu, R., Trubl, G., Taş, N. & Jansson, J. K. Permafrost as a potential pathogen reservoir. One Earth 5, 351–360 (2022).

    Article 

    Google Scholar 

  • Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).

    CAS 
    Article 

    Google Scholar 

  • Baker-Austin, C. et al. Heat wave-associated vibriosis, Sweden and Finland, 2014. Emerg. Infect. Dis. 22, 1216 (2016).

    CAS 
    Article 

    Google Scholar 

  • Ghanchi, N. K. et al. Case series of Naegleria fowleri primary ameobic meningoencephalitis from Karachi, Pakistan. Am. J. Trop. Med. Hyg. 97, 1600–1602 (2017).

    Article 

    Google Scholar 

  • Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).

    Article 

    Google Scholar 

  • Oskorouchi, H. R., Nie, P. & Sousa-Poza, A. The effect of floods on anemia among reproductive age women in Afghanistan. PLoS ONE 13, e0191726 (2018).

    Article 
    CAS 

    Google Scholar 

  • Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector‐borne diseases. Ann. N. Y. Acad. Sci. 1436, 157 (2019).

    Article 

    Google Scholar 

  • Clegg, J. Influence of climate change on the incidence and impact of arenavirus diseases: a speculative assessment. Clin. Microbiol. Infect. 15, 504–509 (2009).

    CAS 
    Article 

    Google Scholar 

  • Nguyen, H. Q., Huynh, T. T. N., Pathirana, A. & Van der Steen, P. Microbial risk assessment of tidal-induced urban flooding in Can Tho City (Mekong Delta, Vietnam). Int. J. Environ. Res. Public. Health 14, 1485 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ivers, L. C. & Ryan, E. T. Infectious diseases of severe weather-related and flood-related natural disasters. Curr. Opin. Infect. Dis. 19, 408–414 (2006).

    Article 

    Google Scholar 

  • Cornell, K. Climate change and infectious disease patterns in the United States: public health preparation and ecological restoration as a matter of justice. MSc thesis, Goucher College (2016).

  • Mishra, V. et al. Climate change and its impacts on global health: a review. Pharma Innov. 8, 316–326 (2019).

    Google Scholar 

  • Lemonick, D. M. Epidemics after natural disasters. Am. J. Clin. Med. 8, 144–152 (2011).

    Google Scholar 

  • Khan, A. E., Xun, W. W., Ahsan, H. & Vineis, P. Climate change, sea-level rise, and health impacts in Bangladesh. Environ. Sci. Policy Sustain. Dev. 53, 18–33 (2011).

    Article 

    Google Scholar 

  • Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).

    CAS 
    Article 

    Google Scholar 

  • Zell, R., Krumbholz, A. & Wutzler, P. Impact of global warming on viral diseases: what is the evidence? Curr. Opin. Biotechnol. 19, 652–660 (2008).

    CAS 
    Article 

    Google Scholar 

  • McFarlane, R. A., Sleigh, A. C. & McMichael, A. J. Land-use change and emerging infectious disease on an island continent. Int. J. Environ. Res. Public. Health 10, 2699–2719 (2013).

    Article 

    Google Scholar 

  • White, R. J. & Razgour, O. Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land‐use change. Mammal. Rev. 50, 336–352 (2020).

    Article 

    Google Scholar 

  • Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).

    CAS 
    Article 

    Google Scholar 

  • Munang’andu, H. M. et al. The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J. Vet. Sci. 13, 293–298 (2012).

    Article 

    Google Scholar 

  • Liu, Q. et al. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 15, 044004 (2020).

    Article 

    Google Scholar 

  • Kapoor, R. et al. God is in the rain: the impact of rainfall-induced early social distancing on COVID-19 outbreaks. J. Health Econ. 81, 102575 (2020).

    Google Scholar 

  • Raza, A., Khan, M. T. I., Ali, Q., Hussain, T. & Narjis, S. Association between meteorological indicators and COVID-19 pandemic in Pakistan. Environ. Sci. Pollut. Res. 28, 40378–40393 (2021).

    CAS 
    Article 

    Google Scholar 

  • Nichols, G. L. et al. Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis. 21, 1101 (2021).

  • El-Sayed, A. & Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 27, 22336–22352 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ruszkiewicz, J. A. et al. Brain diseases in changing climate. Environ. Res. 177, 108637 (2019).

    CAS 
    Article 

    Google Scholar 

  • Herrador, B. R. G. et al. Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environ. Health 14, 29 (2015).

    Article 

    Google Scholar 

  • Burge, C. A. et al. Climate Change influences on marine infectious diseases: implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).

    Article 

    Google Scholar 

  • Mills, J. N., Gage, K. L. & Khan, A. S. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ. Health Perspect. 118, 1507–1514 (2010).

    Article 

    Google Scholar 

  • Gubler, D. J. et al. Climate variability and change in the United States: potential impacts on vector-and rodent-borne diseases. Environ. Health Perspect. 109, 223–233 (2001).

    Google Scholar 

  • Dayrit, J. F., Bintanjoyo, L., Andersen, L. K. & Davis, M. D. P. Impact of climate change on dermatological conditions related to flooding: update from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 57, 901–910 (2018).

    Article 

    Google Scholar 

  • Myaing, T. T. Climate change and emerging zoonotic diseases. KKU Vet. J. 21, 172–182 (2011).

    Google Scholar 

  • Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).

    CAS 
    Article 

    Google Scholar 

  • Oh, M. H., Lee, S. M., Lee, D. H. & Choi, S. H. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect. Immun. 77, 1208–1215 (2009).

    CAS 
    Article 

    Google Scholar 

  • Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Invest. 130, 553–555 (2020).

    CAS 
    Article 

    Google Scholar 

  • Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 767, 145413 (2021).

    CAS 
    Article 

    Google Scholar 

  • Warburton, E. M., Pearl, C. A. & Vonhof, M. J. Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat–helminth system. Parasitol. Res. 115, 2155–2164 (2016).

    Article 

    Google Scholar 

  • Plowright, R. K. et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B 275, 861–869 (2008).

    Article 

    Google Scholar 

  • Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27 (2010).

    Article 

    Google Scholar 

  • Mora, C. et al. Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biol. 13, e1002167 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

    CAS 
    Article 

    Google Scholar 

  • Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).

    CAS 
    Article 

    Google Scholar 

  • Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).

    CAS 
    Article 

    Google Scholar 

  • Tirado, M. C., Clarke, R., Jaykus, L., McQuatters-Gollop, A. & Frank, J. Climate change and food safety: a review. Food Res. Int. 43, 1745–1765 (2010).

    Article 

    Google Scholar 

  • Greene, M. Impact of the Sahelian drought in Mauritania, West Africa. Lancet 303, 1093–1097 (1974).

    Article 

    Google Scholar 

  • Cabrol, J.-C. War, drought, malnutrition, measles—a report from Somalia. N. Engl. J. Med. 365, 1856–1858 (2011).

    CAS 
    Article 

    Google Scholar 

  • Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).

    CAS 
    Article 

    Google Scholar 

  • Calow, R. C., MacDonald, A. M., Nicol, A. L. & Robins, N. S. Ground water security and drought in Africa: linking availability, access, and demand. Groundwater 48, 246–256 (2010).

    CAS 
    Article 

    Google Scholar 

  • Salvador, C., Nieto, R., Linares, C., Díaz, J. & Gimeno, L. Effects of droughts on health: diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for future research. Sci. Total Environ. 703, 134912 (2020).

    CAS 
    Article 

    Google Scholar 

  • Alhoot, M. A., Tong, W. T., Low, W. Y. & Sekaran, S. D. in Climate Change and Human Health Scenario in South and Southeast Asia (ed Akhtar, R) 243–268 (Springer, 2016).

  • Yusa, A. et al. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health 12, 8359–8412 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ligon, B. L. Infectious Diseases that Pose Specific Challenges After Natural Disasters: A Review. Semin. Pediatr. Infect. Dis. 17, 36–45 (2006).

    Article 

    Google Scholar 

  • Nsuami, M. J., Taylor, S. N., Smith, B. S. & Martin, D. H. Increases in gonorrhea among high school students following hurricane Katrina. Sex. Transm. Infect. 85, 194–198 (2009).

    CAS 
    Article 

    Google Scholar 

  • Jochelson, K. HIV and syphilis in the Republic of South Africa: the creation of an epidemic. Afr. Urban Q. 6, 20–34 (1991).

    Google Scholar 

  • Sobral, M. F. F., Duarte, G. B., da Penha Sobral, A. I. G., Marinho, M. L. M. & de Souza Melo, A. Association between climate variables and global transmission of SARS-CoV-2. Sci. Total Environ. 729, 138997 (2020).

    CAS 
    Article 

    Google Scholar 

  • Liu, J. et al. Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. 726, 138513 (2020).

    CAS 
    Article 

    Google Scholar 

  • Chua, P. L. et al. Global projections of temperature-attributable mortality due to enteric infections: a modelling study. Lancet Planet. Health 5, e436–e445 (2021).

    Article 

    Google Scholar 

  • McCreesh, N. & Booth, M. Challenges in predicting the effects of climate change on Schistosoma mansoni and Schistosoma haematobium transmission potential. Trends Parasitol. 29, 548–555 (2013).

    Article 

    Google Scholar 

  • Wu, X., Tian, H., Zhou, S., Chen, L. & Xu, B. Impact of global change on transmission of human infectious diseases. Sci. China Earth Sci. 57, 189–203 (2014).

    Article 

    Google Scholar 

  • Moreno, A. R. Climate change and human health in Latin America: drivers, effects, and policies. Reg. Environ. Change 6, 157–164 (2006).

    Article 

    Google Scholar 

  • McCann, D. G., Moore, A. & Walker, M.-E. The water/health nexus in disaster medicine: I. drought versus flood. Curr. Opin. Environ. Sustain. 3, 480–485 (2011).

    Article 

    Google Scholar 

  • Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).

    CAS 
    Article 

    Google Scholar 

  • Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Article 

    Google Scholar 

  • Hsiao, M.-H. et al. Environmental factors associated with the prevalence of animal bites or stings in patients admitted to an emergency department. J. Acute Med. 2, 95–102 (2012).

    Article 

    Google Scholar 

  • Jones, N. E. & Baker, M. D. Toxicologic exposures associated with natural disasters: gases, kerosene, ash, and bites. Clin. Pediatr. Emerg. Med. 13, 317–323 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A global dataset of seaweed net primary productivity

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia