Pörtner, H. O. et al. Climate Change 2022: Impacts, Adaptation and Vulnerability (IPCC, 2022).
Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).
Google Scholar
Smith, K. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (Cambridge Univ. Press, 2014).
Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 8, 1062–1071 (2018).
Google Scholar
Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).
Google Scholar
Epstein, P. The ecology of climate change and infectious diseases: comment. Ecology 91, 925–928 (2010).
Google Scholar
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).
Jaenisch, T. & Patz, J. Assessment of associations between climate and infectious diseases: a comparison of the reports of the Intergovernmental Panel on Climate Change (IPCC), the National Research Council (NRC), and United States Global Change Research Program (USGCRP). Glob. Change Hum. Health 3, 67–72 (2002).
Google Scholar
Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit. Rev. Microbiol. 42, 548–572 (2016).
Google Scholar
Tabachnick, W. J. Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses. Ann. Rev. Virol 29, 125–145 (2016).
Google Scholar
Khasnis, A. A. & Nettleman, M. D. Global warming and infectious disease. Arch. Med. Res. 36, 689–696 (2005).
Google Scholar
McMichael, A. J. Extreme weather events and infectious disease outbreaks. Virulence 6, 543–547 (2015).
Google Scholar
Ahern, M., Kovats, R. S., Wilkinson, P., Few, R. & Matthies, F. Global health impacts of floods: epidemiologic evidence. Epidemiol. Rev. 27, 36–46 (2005).
Google Scholar
Hunter, P. R. Climate change and waterborne and vector‐borne disease. J. Appl. Microbiol. 94, 37–46 (2003).
Google Scholar
Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vector borne diseases. Am. J. Prev. Med. 35, 436–450 (2008).
Google Scholar
Semenza, J. C. et al. Climate change impact assessment of food- and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 42, 857–890 (2012).
Google Scholar
Nichols, G., Lake, I. & Heaviside, C. Climate change and water-related infectious diseases. Atmosphere 9, 385 (2018).
Google Scholar
Cunliffe, J. A proliferation of pathogens through the 20th century. Scand. J. Immunol. 68, 120–128 (2008).
Google Scholar
Cecchi, L. et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 65, 1073–1081 (2010).
Google Scholar
Demain, J. G. Climate change and the impact on respiratory and allergic disease: 2018. Curr. Allergy Asthma Rep. 18, 22 (2018).
Google Scholar
Andersen, L. K. & Davis, M. D. The effects of the El Niño Southern Oscillation on skin and skin-related diseases: a message from the International Society of Dermatology Climate Change Task Force. Int. J. Dermatol. 54, 1343–1351 (2015).
Google Scholar
Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K. & Fall, R. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. Atmos 98, 12609–12617 (1993).
Google Scholar
Metcalf, C. J. E. & Lessler, J. Opportunities and challenges in modeling emerging infectious diseases. Science 357, 149–152 (2017).
Google Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).
Google Scholar
Nava, A., Shimabukuro, J. S., Chmura, A. A. & Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 58, 393–400 (2017).
Google Scholar
Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).
Google Scholar
Ngongeh, L. A., Idika, I. K. & Ibrahim Shehu, A. R. warming and its impacts on parasitology/entomology. Open Parasitol. J 5, 1–11 (2014).
Google Scholar
LaDeau, S. L., Calder, C. A., Doran, P. J. & Marra, P. P. West Nile virus impacts in American crow populations are associated with human land use and climate. Ecol. Res. 26, 909–916 (2011).
Google Scholar
Gale, P., Drew, T., Phipps, L. P., David, G. & Wooldridge, M. The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J. Appl. Microbiol. 106, 1409–1423 (2009).
Google Scholar
Lancien, J., Muguwa, J., Lannes, C. & Bouvier, J. B. Tsetse and human trypanosomiasis challenge in south eastern Uganda. Int. J. Trop. Insect Sci. 11, 411–416 (1990).
Google Scholar
Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).
Google Scholar
Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).
Google Scholar
Arriaza, B. T., Reinhard, K. J., Araújo, A. G., Orellana, N. C. & Standen, V. G. Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations. Mem. Inst. Oswaldo Cruz 105, 66–72 (2010).
Google Scholar
Kaffenberger, B. H., Shetlar, D., Norton, S. A. & Rosenbach, M. The effect of climate change on skin disease in North America. J. Am. Acad. Dermatol. 76, 140–147 (2017).
Google Scholar
Coates, S. J., Enbiale, W., Davis, M. D. & Andersen, L. K. The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 59, 265–278 (2020).
Google Scholar
Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).
Google Scholar
Nagy, G. J. et al. in Climate Change and Health (ed Leal, W) 475–514 (Springer, 2016).
Kontra, J. M. Zombie infections and other infectious disease complications of global warming. J. Lancaster Gen. Hosp. 12, 12–16 (2017).
Charron, D., Fleury, M., Lindsay, L. R., Ogden, N. & Schuster, C. J. in Human Health in a Changing Climate (ed Séguin, J) 173–210 (Health Canada, 2008).
Butler, C. D. & Harley, D. Primary, secondary and tertiary effects of eco-climatic change: the medical response. Postgrad. Med. J. 86, 230–234 (2010).
Google Scholar
Quarles, W. Global warming means more pathogens. IPM Pract. 35, 1–8 (2017).
Patz, J. A., Engelberg, D. & Last, J. The effects of changing weather on public health. Ann. Rev. Public Health 21, 271–307 (2000).
Google Scholar
Yavarian, J., Shafiei-Jandaghi, N. Z. & Mokhtari-Azad, T. Possible viral infections in flood disasters: a review considering 2019 spring floods in Iran. Iran. J. Microbiol. 11, 85–89 (2019).
Boxall, A. B. A. et al. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 117, 508–514 (2009).
Google Scholar
Wu, R., Trubl, G., Taş, N. & Jansson, J. K. Permafrost as a potential pathogen reservoir. One Earth 5, 351–360 (2022).
Google Scholar
Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).
Google Scholar
Baker-Austin, C. et al. Heat wave-associated vibriosis, Sweden and Finland, 2014. Emerg. Infect. Dis. 22, 1216 (2016).
Google Scholar
Ghanchi, N. K. et al. Case series of Naegleria fowleri primary ameobic meningoencephalitis from Karachi, Pakistan. Am. J. Trop. Med. Hyg. 97, 1600–1602 (2017).
Google Scholar
Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).
Google Scholar
Oskorouchi, H. R., Nie, P. & Sousa-Poza, A. The effect of floods on anemia among reproductive age women in Afghanistan. PLoS ONE 13, e0191726 (2018).
Google Scholar
Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector‐borne diseases. Ann. N. Y. Acad. Sci. 1436, 157 (2019).
Google Scholar
Clegg, J. Influence of climate change on the incidence and impact of arenavirus diseases: a speculative assessment. Clin. Microbiol. Infect. 15, 504–509 (2009).
Google Scholar
Nguyen, H. Q., Huynh, T. T. N., Pathirana, A. & Van der Steen, P. Microbial risk assessment of tidal-induced urban flooding in Can Tho City (Mekong Delta, Vietnam). Int. J. Environ. Res. Public. Health 14, 1485 (2017).
Google Scholar
Ivers, L. C. & Ryan, E. T. Infectious diseases of severe weather-related and flood-related natural disasters. Curr. Opin. Infect. Dis. 19, 408–414 (2006).
Google Scholar
Cornell, K. Climate change and infectious disease patterns in the United States: public health preparation and ecological restoration as a matter of justice. MSc thesis, Goucher College (2016).
Mishra, V. et al. Climate change and its impacts on global health: a review. Pharma Innov. 8, 316–326 (2019).
Lemonick, D. M. Epidemics after natural disasters. Am. J. Clin. Med. 8, 144–152 (2011).
Khan, A. E., Xun, W. W., Ahsan, H. & Vineis, P. Climate change, sea-level rise, and health impacts in Bangladesh. Environ. Sci. Policy Sustain. Dev. 53, 18–33 (2011).
Google Scholar
Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).
Google Scholar
Zell, R., Krumbholz, A. & Wutzler, P. Impact of global warming on viral diseases: what is the evidence? Curr. Opin. Biotechnol. 19, 652–660 (2008).
Google Scholar
McFarlane, R. A., Sleigh, A. C. & McMichael, A. J. Land-use change and emerging infectious disease on an island continent. Int. J. Environ. Res. Public. Health 10, 2699–2719 (2013).
Google Scholar
White, R. J. & Razgour, O. Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land‐use change. Mammal. Rev. 50, 336–352 (2020).
Google Scholar
Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).
Google Scholar
Munang’andu, H. M. et al. The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J. Vet. Sci. 13, 293–298 (2012).
Google Scholar
Liu, Q. et al. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 15, 044004 (2020).
Google Scholar
Kapoor, R. et al. God is in the rain: the impact of rainfall-induced early social distancing on COVID-19 outbreaks. J. Health Econ. 81, 102575 (2020).
Raza, A., Khan, M. T. I., Ali, Q., Hussain, T. & Narjis, S. Association between meteorological indicators and COVID-19 pandemic in Pakistan. Environ. Sci. Pollut. Res. 28, 40378–40393 (2021).
Google Scholar
Nichols, G. L. et al. Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis. 21, 1101 (2021).
El-Sayed, A. & Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 27, 22336–22352 (2020).
Google Scholar
Ruszkiewicz, J. A. et al. Brain diseases in changing climate. Environ. Res. 177, 108637 (2019).
Google Scholar
Herrador, B. R. G. et al. Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environ. Health 14, 29 (2015).
Google Scholar
Burge, C. A. et al. Climate Change influences on marine infectious diseases: implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).
Google Scholar
Mills, J. N., Gage, K. L. & Khan, A. S. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ. Health Perspect. 118, 1507–1514 (2010).
Google Scholar
Gubler, D. J. et al. Climate variability and change in the United States: potential impacts on vector-and rodent-borne diseases. Environ. Health Perspect. 109, 223–233 (2001).
Dayrit, J. F., Bintanjoyo, L., Andersen, L. K. & Davis, M. D. P. Impact of climate change on dermatological conditions related to flooding: update from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 57, 901–910 (2018).
Google Scholar
Myaing, T. T. Climate change and emerging zoonotic diseases. KKU Vet. J. 21, 172–182 (2011).
Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).
Google Scholar
Oh, M. H., Lee, S. M., Lee, D. H. & Choi, S. H. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect. Immun. 77, 1208–1215 (2009).
Google Scholar
Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Invest. 130, 553–555 (2020).
Google Scholar
Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 767, 145413 (2021).
Google Scholar
Warburton, E. M., Pearl, C. A. & Vonhof, M. J. Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat–helminth system. Parasitol. Res. 115, 2155–2164 (2016).
Google Scholar
Plowright, R. K. et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B 275, 861–869 (2008).
Google Scholar
Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27 (2010).
Google Scholar
Mora, C. et al. Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biol. 13, e1002167 (2015).
Google Scholar
Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).
Google Scholar
Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).
Google Scholar
Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).
Google Scholar
Tirado, M. C., Clarke, R., Jaykus, L., McQuatters-Gollop, A. & Frank, J. Climate change and food safety: a review. Food Res. Int. 43, 1745–1765 (2010).
Google Scholar
Greene, M. Impact of the Sahelian drought in Mauritania, West Africa. Lancet 303, 1093–1097 (1974).
Google Scholar
Cabrol, J.-C. War, drought, malnutrition, measles—a report from Somalia. N. Engl. J. Med. 365, 1856–1858 (2011).
Google Scholar
Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).
Google Scholar
Calow, R. C., MacDonald, A. M., Nicol, A. L. & Robins, N. S. Ground water security and drought in Africa: linking availability, access, and demand. Groundwater 48, 246–256 (2010).
Google Scholar
Salvador, C., Nieto, R., Linares, C., Díaz, J. & Gimeno, L. Effects of droughts on health: diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for future research. Sci. Total Environ. 703, 134912 (2020).
Google Scholar
Alhoot, M. A., Tong, W. T., Low, W. Y. & Sekaran, S. D. in Climate Change and Human Health Scenario in South and Southeast Asia (ed Akhtar, R) 243–268 (Springer, 2016).
Yusa, A. et al. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health 12, 8359–8412 (2015).
Google Scholar
Ligon, B. L. Infectious Diseases that Pose Specific Challenges After Natural Disasters: A Review. Semin. Pediatr. Infect. Dis. 17, 36–45 (2006).
Google Scholar
Nsuami, M. J., Taylor, S. N., Smith, B. S. & Martin, D. H. Increases in gonorrhea among high school students following hurricane Katrina. Sex. Transm. Infect. 85, 194–198 (2009).
Google Scholar
Jochelson, K. HIV and syphilis in the Republic of South Africa: the creation of an epidemic. Afr. Urban Q. 6, 20–34 (1991).
Sobral, M. F. F., Duarte, G. B., da Penha Sobral, A. I. G., Marinho, M. L. M. & de Souza Melo, A. Association between climate variables and global transmission of SARS-CoV-2. Sci. Total Environ. 729, 138997 (2020).
Google Scholar
Liu, J. et al. Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. 726, 138513 (2020).
Google Scholar
Chua, P. L. et al. Global projections of temperature-attributable mortality due to enteric infections: a modelling study. Lancet Planet. Health 5, e436–e445 (2021).
Google Scholar
McCreesh, N. & Booth, M. Challenges in predicting the effects of climate change on Schistosoma mansoni and Schistosoma haematobium transmission potential. Trends Parasitol. 29, 548–555 (2013).
Google Scholar
Wu, X., Tian, H., Zhou, S., Chen, L. & Xu, B. Impact of global change on transmission of human infectious diseases. Sci. China Earth Sci. 57, 189–203 (2014).
Google Scholar
Moreno, A. R. Climate change and human health in Latin America: drivers, effects, and policies. Reg. Environ. Change 6, 157–164 (2006).
Google Scholar
McCann, D. G., Moore, A. & Walker, M.-E. The water/health nexus in disaster medicine: I. drought versus flood. Curr. Opin. Environ. Sustain. 3, 480–485 (2011).
Google Scholar
Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).
Google Scholar
Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).
Google Scholar
Hsiao, M.-H. et al. Environmental factors associated with the prevalence of animal bites or stings in patients admitted to an emergency department. J. Acute Med. 2, 95–102 (2012).
Google Scholar
Jones, N. E. & Baker, M. D. Toxicologic exposures associated with natural disasters: gases, kerosene, ash, and bites. Clin. Pediatr. Emerg. Med. 13, 317–323 (2012).
Google Scholar
Source: Ecology - nature.com