Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).
Google Scholar
Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).
Google Scholar
Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. A comparison of joint species distribution models for presence–absence data. Methods Ecol. Evol. 10, 198–211 (2018).
Google Scholar
Zimmermann, N. E., Edwards, T. C., Graham, C. H., Pearman, P. B. & Svenning, J.-C. New trends in species distribution modelling. Ecography (Cop.) 33, 985–989 (2010).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.) 29, 129–151 (2006).
Google Scholar
Kass, J. M. et al. Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol. Evol. 9, 1151–1156 (2018).
Google Scholar
Morisette, J. T. et al. VisTrails SAHM: Visualization and workflow management for species habitat modeling. Ecography (Cop.) 36, 129–135 (2013).
Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).
Google Scholar
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Google Scholar
Syfert, M. M. et al. Using species distribution models to inform IUCN Red List assessments. Biol. Conserv. 177, 174–184 (2014).
Google Scholar
Robinson, A. P., Walshe, T., Burgman, M. A. & Nunn, M. Invasive Species: Risk Assessment and Management (Cambridge University Press, 2017).
Google Scholar
Fontaine, J. J. Improving our legacy: Incorporation of adaptive management into state wildlife action plans. J. Environ. Manag. 92, 1403–1408 (2011).
Google Scholar
Gantchoff, M., Conlee, L. & Belant, J. Conservation implications of sex-specific landscape suitability for a large generalist carnivore. Divers. Distrib. 25, 1488–1496 (2019).
Google Scholar
Camaclang, A. E., Maron, M., Martin, T. G. & Possingham, H. P. Current practices in the identification of critical habitat for threatened species. Conserv. Biol. 29, 482–492 (2014).
Google Scholar
Schwartz, M. W. The Performance of the Endangered Species Act. Annu. Rev. Ecol. Evol. Syst. 39, 279–299 (2008).
Google Scholar
Acevedo, P. et al. Generalizing and transferring spatial models: A case study to predict Eurasian badger abundance in Atlantic Spain. Ecol. Model. 275, 1–8 (2014).
Google Scholar
Werkowska, W., Márquez, A. L., Real, R. & Acevedo, P. A practical overview of transferability in species distribution modeling. Environ. Rev. 25, 127–133 (2017).
Google Scholar
Barbosa, A. M., Real, R. & MarioVargas, J. Transferability of environmental favourability models in geographic space: The case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. Ecol. Model. 220, 747–754 (2009).
Google Scholar
Randin, C. F. et al. Are niche-based species distribution models transferable in space?. J. Biogeogr. 33, 1689–1703 (2006).
Google Scholar
Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invasions 13, 2785–2797 (2011).
Google Scholar
Torres, R. T. et al. Favourableness and connectivity of a Western Iberian landscape for the reintroduction of the iconic Iberian ibex Capra pyrenaica. Oryx 51, 709–717 (2016).
Google Scholar
Luoto, M., Kuussaari, M. & Toivonen, T. Modelling butterfly distribution based on remote sensing data. J. Biogeogr. 29, 1027–1037 (2002).
Google Scholar
Cerasoli, F. et al. Determinants of habitat suitability models transferability across geographically disjunct populations: Insights from Vipera ursinii urs inii. Ecol. Evol. 11, 3991–4011 (2021).
Google Scholar
Dobrowski, S. Z. et al. Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecol. Monogr. 81, 241–257 (2011).
Google Scholar
Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography (Cop.) 30, 550–560 (2007).
Google Scholar
Qiao, H. et al. An evaluation of transferability of ecological niche models. Ecography (Cop.) 42, 521–534 (2018).
Google Scholar
Wenger, S. J. & Olden, J. D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 3, 260–267 (2012).
Google Scholar
Gantchoff, M., Conlee, L. & Belant, J. L. Planning for carnivore recolonization by mapping sex-specific landscape connectivity. Glob. Ecol. Conserv. 21, e00869 (2020).
Google Scholar
Gantchoff, M. G. et al. Potential distribution and connectivity for recolonizing cougars in the Great Lakes region, USA. Biol. Conserv. 257, 109144 (2021).
Google Scholar
Boudreau, M. et al. Spatial prioritization of public outreach in the face of carnivore recolonization. J. Appl. Ecol. 59, 757–767 (2002).
Google Scholar
Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 80(346), 1517–1519 (2014).
Google Scholar
Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54, 123 (2004).
Google Scholar
Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).
Google Scholar
Gompper, M. E., Belant, J. L. & Kays, R. Carnivore coexistence: America’s recovery. Science 347, 382–383 (2015).
Google Scholar
Mech, L. D. Where can wolves live and how can we live with them?. Biol. Conserv. 210, 310–317 (2017).
Google Scholar
United States Fish and Wildlife Service (USFWS). Endangered and threatened wildlife and plants; Removing the gray wolf (Canis lupus) from the list of endangered and threatened wildlife. Fed. Reg. 85(213), 69778–69895 (2020).
Gehring, T. M. & Potter, B. A. Wolf habitat analysis in Michigan: An example of the need for proactive land management for carnivore species. Wild. Soc. Bull. 33, 1237–1244 (2005).
Google Scholar
Falcucci, A., Maiorano, L., Tempio, G., Boitani, L. & Ciucci, P. Modeling the potential distribution for a range-expanding species: Wolf recolonization of the Alpine range. Biol. Conserv. 158, 63–72 (2013).
Google Scholar
Torres, L. G. et al. Poor transferability of species distribution models for a pelagic predator, the grey petrel, indicates contrasting habitat preferences across ocean basins. PLoS One 10, e0120014 (2015).
Google Scholar
Olson, L. E. et al. Improved prediction of Canada lynx distribution through regional model transferability and data efficiency. Ecol. Evol. 11, 1667–1690 (2021).
Google Scholar
Carroll, C., Rohlf, D. J., vonHoldt, B. M., Treves, A. & Hendricks, S. A. Wolf delisting challenges demonstrate need for an improved framework for conserving intraspecific variation under the endangered species act. Bioscience 71, 73–84 (2020).
Google Scholar
Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).
Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
Paton, R. S. & Matthiopoulos, J. Defining the scale of habitat availability for models of habitat selection. Ecology https://doi.org/10.1890/14-2241.1 (2015).
Google Scholar
Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).
Google Scholar
Arntzen, J. W. From descriptive to predictive distribution models: A working example with Iberian amphibians and reptiles. Front. Zool. 3, 1–11 (2006).
Google Scholar
Conway, K. Wolf recovery—GIS facilitates habitat mapping in the Great Lake States. GIS WORLD 9, 54–57 (1996).
Boitani, L. Wolf conservation and recovery. In Wolves: Behavior, Ecology, and Conservation (eds Mech, L. D. & Boitani, L.) (University of Chicago Press, 2007).
Mladenoff, D. J., Sickley, T. A., Haight, R. G. & Wydeven, A. P. A regional landscape analysis and prediction of favorable gray wolf habitat in the northern Great Lakes region. Conserv. Biol. 9, 279–294 (1995).
Google Scholar
Treves, A., Martin, K. A., Wiedenhoeft, J. E. & Wydeven, A. P. Dispersal of gray wolves in the Great Lakes region. In Recovery of Gray Wolves in the Great Lakes Region of the United States 191–204 (Springer, 2009).
Google Scholar
Nelson, M. E. Winter range arrival and departure of white-tailed deer in northeastern Minnesota. Can. J. Zool. 73, 1069–1076 (1995).
Google Scholar
Droghini, A. & Boutin, S. Snow conditions influence grey wolf (Canis lupus) travel paths: The effect of human-created linear features. Can. J. Zool. 96, 39–47 (2018).
Google Scholar
Beyer, D. E., Peterson, R. O., Vucetich, J. A. & Hammill, J. H. Wolf population changes in Michigan. In Recovery of Gray Wolves in the Great Lakes Region of the United States 65–85 (Springer, 2009).
Google Scholar
Claeys, G. B. Wolves in the Lower Peninsula of Michigan: Habitat modeling, evaluation of connectivity, and capacity estimation (Doctoral dissertation, Duke University) (2010)..
Gehring, T. M. & Potter, B. A. Wolf habitat analysis in Michigan: An example of the need for proactive land management for carnivore species. Wildl. Soc. Bull. 33, 1237–1244 (2005).
Google Scholar
Mancinelli, S., Falco, M., Boitani, L. & Ciucci, P. Social, behavioural and temporal components of wolf (Canis lupus) responses to anthropogenic landscape features in the central Apennines, Italy. J. Zool. 309, 114–124 (2019).
Google Scholar
Potvin, M. J. et al. Monitoring and habitat analysis for wolves in upper Michigan. J. Wildl. Manag. 69, 1660–1669 (2005).
Google Scholar
Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542 (2011).
Google Scholar
Zimmermann, B., Nelson, L., Wabakken, P., Sand, H. & Liberg, O. Behavioral responses of wolves to roads: Scale-dependent ambivalence. Behav. Ecol. 25, 1353–1364 (2014).
Google Scholar
Kojola, I. et al. Wolf visitations close to human residences in Finland: The role of age, residence density, and time of day. Biol. Conserv. 198, 9–14 (2016).
Google Scholar
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
Google Scholar
Kautz, T. M. et al. Large carnivore response to human road use suggests a landscape of coexistence. Glob. Ecol. Conserv. 30, e01772 (2021).
Google Scholar
Thuiller, W., Brotons, L., Araújo, M. B. & Lavorel, S. Effects of restricting environmental range of data to project current and future species distributions. Ecography (Cop.) 27, 165–172 (2004).
Google Scholar
Václavík, T. & Meentemeyer, R. K. Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers. Distrib. 18, 73–83 (2011).
Google Scholar
VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Model. 220, 589–594 (2009).
Google Scholar
Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl. Acad. Sci. U.S.A. 114, 7641–7646 (2017).
Google Scholar
Rosauer, D. F., Pollock, L. J., Linke, S. & Jetz, W. Phylogenetically informed spatial planning is required to conserve the mammalian tree of life. Proc. Biol. Sci. 284, 20170627 (2017).
Google Scholar
Guillera-Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).
Google Scholar
Source: Ecology - nature.com