Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).
Google Scholar
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).
Google Scholar
Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).
Google Scholar
Vilà, M. & Hulme, P. E. in Impact of Biological Invasions on Ecosystem Services Vol. 12 Invading Nature – Springer Series in Invasion Ecology (eds Vilà, M. & Hulme, P. E.) 1–14 (Springer, 2017).
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).
Google Scholar
Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).
Google Scholar
Bacher, S. et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 9, 159–168 (2018).
Google Scholar
Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
Google Scholar
Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021).
Google Scholar
Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003).
Google Scholar
Thuiller, W., Richardson, D. M. & Midgley, G. F. in Biological Invasions (ed. Nentwig, W.) 197–211 (Springer, 2007).
Hobbs, R. J. in Invasive Species in a Changing World (eds Mooney, H. A. & Hobbs, R. J.) 55–64 (Island Press, 2000).
Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).
Google Scholar
Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313 (2016).
Google Scholar
Bucharova, A. & van Kleunen, M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 97, 230–238 (2009).
Google Scholar
Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).
Google Scholar
van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).
Google Scholar
van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).
Google Scholar
Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).
Google Scholar
Winkler, D. E., Gremer, J. R., Chapin, K. J., Kao, M. & Huxman, T. E. Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). Am. J. Bot. 105, 1188–1197 (2018).
Google Scholar
Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).
Google Scholar
Banerjee, A. K., Prajapati, J., Bhowmick, A. R., Huang, Y. & Mukherjee, A. Different factors influence naturalization and invasion processes – a case study of Indian alien flora provides management insights. J. Environ. Manag. 294, 113054 (2021).
Google Scholar
Ni, M. et al. Invasion success and impacts depend on different characteristics in non-native plants. Divers. Distrib. 27, 1194–1207 (2021).
Google Scholar
Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci. USA 118, e2021173118 (2021).
Google Scholar
Omer, A. et al. Characteristics of the naturalized flora of Southern Africa largely reflect the non-random introduction of alien species for cultivation. Ecography 44, 1812–1825 (2021).
Google Scholar
Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).
Google Scholar
Omer, A., Kordofani, M., Gibreel, H. H., Pyšek, P. & van Kleunen, M. The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biol. Invasions 23, 2033–2045 (2021).
Google Scholar
Duncan, R. P. & Williams, P. A. Darwin’s naturalization hypothesis challenged. Nature 417, 608–609 (2002).
Google Scholar
Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).
Google Scholar
Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos 82, 282–294 (1998).
Google Scholar
Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Resident–invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am. Nat. 186, 59–71 (2015).
Google Scholar
Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).
Google Scholar
Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).
Google Scholar
Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).
Google Scholar
Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2016).
Google Scholar
Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).
Procheş, Ş., Wilson, J. R. U., Richardson, D. M. & Rejmánek, M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 17, 5–10 (2008).
Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).
Google Scholar
Cadotte, M. W., Campbell, S. E., Li, S. P., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev. Plant Biol. 69, 661–684 (2018).
Google Scholar
van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).
Google Scholar
Park, D. S., Feng, X., Maitner, B. S., Ernst, K. C. & Enquist, B. J. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA 117, 10904–10910 (2020).
Google Scholar
Diez, J. M. et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12, 1174–1183 (2009).
Google Scholar
Malecore, E. M., Dawson, W., Kempel, A., Müller, G. & van Kleunen, M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 107, 781–793 (2019).
Google Scholar
Schaefer, H., Hardy, O. J., Silva, L., Barraclough, T. G. & Savolainen, V. Testing Darwin’s naturalization hypothesis in the Azores. Ecol. Lett. 14, 389–396 (2011).
Google Scholar
Strauss, S. Y., Webb, C. O. & Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA 103, 5841–5845 (2006).
Google Scholar
Li, S.-p. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).
Google Scholar
Pellock, S., Thompson, A., He, K., Mecklin, C. & Yang, J. Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Community Ecol. 14, 172–179 (2013).
Google Scholar
Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).
Google Scholar
van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).
Google Scholar
Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021).
Google Scholar
Carboni, M. et al. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).
Google Scholar
Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008).
Google Scholar
Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).
Google Scholar
Rejmánek, M. in Invasive Species and Biodiversity Management (eds Schei, P. J. & Vilken, A.) 79–102 (Kluwer Academic, 1998).
Rejmánek, M. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171–181 (1996).
Google Scholar
Maurel, N., Hanspach, J., Kuhn, I., Pysek, P. & van Kleunen, M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 25, 1500–1509 (2016).
Google Scholar
Glen, H. F. Cultivated Plants of Southern Africa: Botanical Names, Common Names, Origins, Literature (National Botanical Institute, 2002).
Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51, 103–113 (2001).
Google Scholar
Faulkner, K. T., Robertson, M. P., Rouget, M. & Wilson, J. R. U. Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol. Invasions 18, 73–87 (2016).
Google Scholar
Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015).
Google Scholar
Lambdon, P.-W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).
Bennett, B. M. Naturalising Australian trees in South Africa: climate, exotics and experimentation. J. South. Afr. Stud. 37, 265–280 (2011).
Google Scholar
Richardson, D. M. et al. in Biological Invasions in South Africa (eds van Wilgen, B. W. et al.) 67–96 (Springer, 2020).
Li, S.-p. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).
Google Scholar
Duarte, M., Verdú, M., Cavieres, L. A. & Bustamante, R. O. Plant–plant facilitation increases with reduced phylogenetic relatedness along an elevation gradient. Oikos 130, 248–259 (2021).
Google Scholar
Verdú, M., Rey, P. J., Alcántara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).
Google Scholar
Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).
Google Scholar
Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).
Google Scholar
Dostál, P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).
Google Scholar
Levin, S. C., Crandall, R. M., Pokoski, T., Stein, C. & Knight, T. M. Phylogenetic and functional distinctiveness explain alien plant population responses to competition. Proc. R. Soc. B 287, 20201070 (2020).
Google Scholar
Williams, E. W., Zeldin, J., Semski, W. R., Hipp, A. L. & Larkin, D. J. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia 197, 459–469 (2021).
Google Scholar
Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & Van der Bank, M. Revisiting Darwin’s naturalization conundrum: explaining invasion success of non-native trees and shrubs in Southern Africa. J. Ecol. 103, 871–879 (2015).
Google Scholar
Trotta, L. B., Siders, Z. A., Sessa, E. B. & Baiser, B. The role of phylogenetic scale in Darwin’s naturalization conundrum in the critically imperilled pine rockland ecosystem. Divers. Distrib. 27, 618–631 (2021).
Google Scholar
Sol, D. et al. A test of Darwin’s naturalization conundrum in birds reveals enhanced invasion success in the presence of close relatives. Ecol. Lett. 25, 661–672 (2022).
Google Scholar
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).
Google Scholar
Henderson, L. Comparisons of invasive plants in Southern Africa originating from southern temperate, northern temperate and tropical regions. Bothalia 36, 201–222 (2006).
Google Scholar
Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (R Foundation for Statistical Computing, Vienna, 2019).
Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).
Google Scholar
van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).
Google Scholar
Zengeya, T. A. & Wilson, J. R. (eds) The Status of Biological Invasions and Their Management in South Africa in 2019 (South African National Biodiversity Institute and DSI-NRF Centre of Excellence for Invasion Biology, 2021).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Google Scholar
R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).
Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
Google Scholar
Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).
Google Scholar
rcompanion: Functions to support extension education program evaluation v. 2.4.1 (R Foundation for Statistical Computing, 2021).
Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).
Google Scholar
Source: Ecology - nature.com