in

Prevalent emergence of reciprocity among cross-feeding bacteria

  • Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci. 2015;112:6449–54.

    CAS 
    Article 

    Google Scholar 

  • D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Natural Product Reports. 2018;35:455–88.

    Article 

    Google Scholar 

  • Garcia SL, Buck M, McMahon KD, Grossart H-P, Eiler A, Warnecke F. Auxotrophy and intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model community. Mol Ecology. 2015;24:4449–59.

    CAS 
    Article 

    Google Scholar 

  • Johnson WM, Alexander H, Bier RL, Miller DR, Muscarella ME, Pitz KJ, et al. Auxotrophic interactions: A stabilizing attribute of aquatic microbial communities? FEMS Microbiol Ecology. 2020;96:1–14.

  • D’Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: Selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution. 2014;68:2559–70.

    Article 

    Google Scholar 

  • Oliveira NM, Niehus R, Foster KR. Evolutionary limits to cooperation in microbial communities. Proc Natl Acad Sci. 2014;111:17941–6.

    CAS 
    Article 

    Google Scholar 

  • Pande S, Kost C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 2017;25:349–61.

    CAS 
    Article 

    Google Scholar 

  • Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. Philos Trans R Soc B: Biological Sci. 2020;375:20190250.

    CAS 
    Article 

    Google Scholar 

  • Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microbial Cell Factories. 2012;11:122.

    CAS 
    Article 

    Google Scholar 

  • Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: Cobamides unveil microbial interactions. Science. 2020;369:eaba0165.

    CAS 
    Article 

    Google Scholar 

  • Zomorrodi AR, Segrè D. Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities. Nat Commun. 2017;8:1563.

    Article 

    Google Scholar 

  • D’Souza G, Kost C. Experimental evolution of metabolic dependency in bacteria. PLoS Genetics. 2016;12:e1006364.

    Article 

    Google Scholar 

  • Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, et al. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr Biology. 2021;31:5547–57.

    CAS 
    Article 

    Google Scholar 

  • Jiang X, Zerfaß C, Feng S, Eichmann R, Asally M, Schäfer P, et al. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. ISME J. 2018;12:1443–56.

    CAS 
    Article 

    Google Scholar 

  • Konstantinidis D, Pereira F, Geissen E-M, Grkovska K, Kafkia E, Jouhten P, et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol Syst Biology. 2021;17:e10189.

    CAS 
    Article 

    Google Scholar 

  • Harcombe WR, Chacón JM, Adamowicz EM, Chubiz LM, Marx CJ. Evolution of bidirectional costly mutualism from byproduct consumption. Proc Natl Acad Sci. 2018;115:12000–4.

    CAS 
    Article 

    Google Scholar 

  • Giri S, Waschina S, Kaleta C, Kost C. Defining division of labor in microbial communities. J Mol Biol. 2019;431:4712–31.

    CAS 
    Article 

    Google Scholar 

  • Sanchez A, Gore J. Feedback between population and evolutionary dynamics determines the fate of social microbial populations. PLOS Biology. 2013;11:e1001547.

    CAS 
    Article 

    Google Scholar 

  • Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biology. 2020;30:3580–3590.e7.

    CAS 
    Article 

    Google Scholar 

  • McNally CP, Borenstein E. Metabolic model-based analysis of the emergence of bacterial cross-feeding via extensive gene loss. BMC Syst Biology. 2018;12:69.

    Article 

    Google Scholar 

  • Estrela S, Morris JJ, Kerr B. Private benefits and metabolic conflicts shape the emergence of microbial interdependencies. Environ Microbiol. 2016;18:1415–27.

    Article 

    Google Scholar 

  • Libby E, Hébert-Dufresne L, Hosseini S-R, Wagner A. Syntrophy emerges spontaneously in complex metabolic systems. PLOS Comput Biology. 2019;15:e1007169.

    Article 

    Google Scholar 

  • Rabbers I, Gottstein W, Feist A, Teusink B, Bruggeman FJ, Bachmann H Selection for cell yield does not reduce overflow metabolism in E. coli. bioRxiv. 2021:2021.05.24.445453.

  • Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.

    Article 

    Google Scholar 

  • Gude S, Pherribo GJ, Taga ME. Emergence of metabolite provisioning as a by-product of evolved biological functions. mSystems. 2020;5:e00259–20.

    CAS 
    Article 

    Google Scholar 

  • Campbell K, Herrera-Dominguez L, Correia-Melo C, Zelezniak A, Ralser M. Biochemical principles enabling metabolic cooperativity and phenotypic heterogeneity at the single cell level. Current Opinion in. Syst Biology. 2018;8:97–108.

    Google Scholar 

  • Morris JJ. Black Queen evolution: the role of leakiness in structuring microbial communities. Trends Genetics. 2015;31:475–82.

    CAS 
    Article 

    Google Scholar 

  • van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–701.

    Article 

    Google Scholar 

  • Shitut S, Ahsendorf T, Pande S, Egbert M, Kost C. Nanotube-mediated cross-feeding couples the metabolism of interacting bacterial cells. Environ Microbiol. 2019;21:1306–20.

    CAS 
    Article 

    Google Scholar 

  • Klee SM, Sinn JP, Finley M, Allman EL, Smith PB, Aimufua O, et al. Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl Environ Microbiol. 2019;85:e00935–19.

    CAS 
    Article 

    Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.

    CAS 
    Article 

    Google Scholar 

  • Wienhausen G, Noriega-Ortega BE, Niggemann J, Dittmar T, Simon M The exometabolome of two model strains of the Roseobacter group: A marketplace of microbial metabolites. Front Microbiol. 2017;8.

  • Pinu FR, Granucci N, Daniell J, Han T-L, Carneiro S, Rocha I, et al. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics. 2018;14:43.

    Article 

    Google Scholar 

  • Shiio I, Ôtsuka S-I, Takahashi M. Effect of biotin on the bacterial formation of glutamic acid: I. Glutamate formation and cellular permeability of amino acids. J Biochem. 1962;51:56–62.

    CAS 
    Article 

    Google Scholar 

  • Konings WN, Poolman B, Driessen AJM. Can the excretion of metabolites by bacteria be manipulated? FEMS Microbiol Rev. 1992;8:93–108.

    CAS 
    Article 

    Google Scholar 

  • Zampieri M, Hörl M, Hotz F, Müller NF, Sauer U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat Commun. 2019;10:3354.

    Article 

    Google Scholar 

  • Kochanowski K, Okano H, Patsalo V, Williamson J, Sauer U, Hwa T. Global coordination of metabolic pathways in Escherichia coli by active and passive regulation. Mol Syst Biology. 2021;17:e10064.

    CAS 
    Article 

    Google Scholar 

  • Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.

    CAS 
    Article 

    Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biology. 2006;2:2006.0008.

    Article 

    Google Scholar 

  • Thomason LC, Costantino N, Court DL E. coli genome manipulation by P1 transduction. Curr Protocols Mol Biology. 2007;79:1.17.1-1.8.

  • Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat Commun. 2015;6:6238.

    CAS 
    Article 

    Google Scholar 

  • Oña L, Giri S, Avermann N, Kreienbaum M, Thormann KM, Kost C. Obligate cross-feeding expands the metabolic niche of bacteria. Nat Ecology Evolut. 2021;5:1224–32.

    Article 

    Google Scholar 

  • Choi K-H, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, et al. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods. 2005;2:443–8.

    CAS 
    Article 

    Google Scholar 

  • Vanstockem M, Michiels K, Vanderleyden J, Van Gool AP. Transposon Mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl Environ Microbiology. 1987;53:410–5.

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Power, laws, and planning

    Disentangling influence over group speed and direction reveals multiple patterns of influence in moving meerkat groups