in

Adaptive phenotypic plasticity is under stabilizing selection in Daphnia

  • Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).

    Article 

    Google Scholar 

  • Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ghalambor, C. K. et al. Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article 

    Google Scholar 

  • King, J. G. & Hadfield, J. D. The evolution of phenotypic plasticity when environments fluctuate in time and space. Evol. Lett. 3, 15–27 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Newman, R. A. Genetic variation for phenotypic plasticity in the larval life history of spadefoot toads (Scaphiopus couchii). Evolution 48, 1773–1785 (1994).

    PubMed 

    Google Scholar 

  • Nussey, D. H. et al. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheiner, S. Selection experiments and the study of phenotypic plasticity 1. J. Evol. Biol. 15, 889–898 (2002).

    Article 

    Google Scholar 

  • Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Reger, J. et al. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).

    Article 

    Google Scholar 

  • Rountree, D. & Nijhout, H. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J. Insect Physiol. 41, 987–992 (1995).

    CAS 
    Article 

    Google Scholar 

  • Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty. Ecol. Evol. 2, 751–767 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bonamour, S. et al. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B 374, 20180178 (2019).

    Article 

    Google Scholar 

  • Fox, R.J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0174 (2019).

  • Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277, 503–511 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yampolsky, L. Y., Schaer, T. M. & Ebert, D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc. R. Soc. B 281, 20132744 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119, 214–225 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).

    PubMed 

    Google Scholar 

  • Lynch, M. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136, 727–741 (1990).

    Article 

    Google Scholar 

  • Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).

    Article 

    Google Scholar 

  • West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102, 6543–6549 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Turelli, M. & Barton, N. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Noble, D. W., Radersma, R. & Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc. Natl Acad. Sci. USA 116, 13452–13461 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66-9, 2891–2902 (2012).

    Article 

    Google Scholar 

  • Houle, D. How should we explain variation in the genetic variance of traits? Genetica 102, 241–253 (1998).

    PubMed 
    Article 

    Google Scholar 

  • Tollrian, R. Predator‐induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76, 1691–1705 (1995).

    Article 

    Google Scholar 

  • Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).

    CAS 
    Article 

    Google Scholar 

  • Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).

    Article 

    Google Scholar 

  • Dennis, S. et al. Phenotypic convergence along a gradient of predation risk. Proc. R. Soc. B 278, 1687–1696 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hammill, E. & Beckerman, A. P. Reciprocity in predator–prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology. Oecologia 163, 193–202 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Hammill, E., Rogers, A. & Beckerman, A. P. Costs, benefits and the evolution of inducible defences: a case study with Daphnia pulex. J. Evol. Biol. 21, 705–715 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnard-Kubow, K. et al. Polygenic variation in sexual investment across an ephemerality gradient in Daphnia pulex. Mol. Bio. Evol. 39, msac121 (2022).

    Article 

    Google Scholar 

  • Deng, H.-W. & Lynch, M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics 147, 147–155 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seyfert, A. L. et al. The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics 178, 2113–2121 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Collyer, M. L. & Adams, D. C. Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24, 75 (2013).

    Google Scholar 

  • Adams, D.C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. et al. Geomorph: software for geometric morphometric analyses (University of New England, 2016); https://hdl.handle.net/1959.11/21330

  • Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Richards, C. L., Bossdorf, O. & Pigliucci, M. What role does heritable epigenetic variation play in phenotypic evolution? BioScience 60, 232–237 (2010).

    Article 

    Google Scholar 

  • Latta, L. C. IV et al. The phenotypic effects of spontaneous mutations in different environments. Am. Nat. 185, 243–252 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Lind, M. I. et al. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B 282, 20151651 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85, 2302–2311 (2004).

    Article 

    Google Scholar 

  • Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tollrian, R. & Harvell, C.D. The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, 1999).

  • Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).

    PubMed 
    Article 

    Google Scholar 

  • Kvist, J. et al. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Mol. Ecol. 22, 602–619 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Siepielski, A. M. et al. Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proc. R. Soc. B 278, 1572–1580 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Muschick, M. et al. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol. Biol. 11, 116 (2011).

  • Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Halligan, D. L. & Keightley, P. D. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172 (2009).

    Article 

    Google Scholar 

  • Houle, D., Morikawa, B. & Lynch, M. Comparing mutational variabilities. Genetics 143, 1467–1483 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eberle, S. et al. Hierarchical assessment of mutation properties in Daphnia magna. G3 Genes Genomes Genetics 8, 3481–3487 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).

    CAS 
    Article 

    Google Scholar 

  • Reed, T. E., Schindler, D. E. & Waples, R. S. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25, 56–63 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • ASTM, Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians (American Society for Testing and Materials, 1988).

  • Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • MarkDuplicates v.2.20 (Broad Institute, 2019); http://broadinstitute.github.io/picard

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2018).

  • Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Naraki, Y., Hiruta, C. & Tochinai, S. Identification of the precise kairomone-sensitive period and histological characterization of necktooth formation in predator-induced polyphenism in Daphnia pulex. Zool. Sci. 30, 619–625 (2013).

    Article 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scrucca, L. et al. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2018).

  • Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).

    Article 

    Google Scholar 

  • Collyer, M. L. & Adams, D. C. RRPP: an r package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).

    Article 

    Google Scholar 

  • Collyer, M., Adams, D. & and Collyer, M.M. RRPP: linear model evaluation with randomized residuals in a permutation procedure. R package version 1.3 https://CRAN.R-project.org/package=RRPP (2021).

  • Smirnov, P. robcor: Robust correlations. R package version 0.1-6.1 https://CRAN.R-project.org/package=ropcor (2014).

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • Yang, J. et al. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • Villanueva, R., Chen, Z. & Wickham, H. ggplot2: Elegant Graphics for Data Analysis Using the Grammar of Graphics (Springer-Verlag, 2016).

  • Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9. 2 https://CRAN.R-project.org/package=cowplot (2020).

  • Dowle, M. et al. data.table: Extension of ‘data.frame‘. R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2021).

  • Daniel, M. foreach: Provides foreach looping construct. R package version 1.5.1 https://CRAN.R-project.org/package=foreach (2020).

  • Weston, S. doMC: Foreach parallel adaptor for ‘parallel’. R package version 1.3.7 https://CRAN.R-project.org/package=doMC (2020).

  • Clarke, E. & Sherrill-Mix, S. Ggbeeswarm: Categorical scatter (violin point) plots. R package version 0.6. 0 https://CRAN.R-project.org (2017).

  • Garnier, S. et al. viridis: Default color maps from ‘matplotlib’. R package version 0.5.1 (2018).


  • Source: Ecology - nature.com

    A dataset of road-killed vertebrates collected via citizen science from 2014–2020

    Permian hypercarnivore suggests dental complexity among early amniotes