Bastin, J. F. et al. The global tree restoration potential. Science 364, 76–79 (2019).
Google Scholar
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).
Google Scholar
Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
Google Scholar
Camenzind, T., Httenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).
Google Scholar
Hou, E., Luo, Y., Kuang, Y., Chen, C. & Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 1–9 (2020).
Google Scholar
Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).
Google Scholar
Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).
Google Scholar
Houghton, R. A. Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci. 35, 313–347 (2007).
Google Scholar
Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: implications for soil respiration. Global Change Biol. 24, 4816–4826 (2018).
Google Scholar
Waring, B. G., Weintraub, S. R. & Sinsabaugh, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117, 101–113 (2014).
Google Scholar
Mori, T., Lu, X., Aoyagi, R. & Mo, J. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Funct. Ecol. 32, 1145–1154 (2018).
Google Scholar
Gallardo, A. & Schlesinger, W. H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26, 1409–1415 (1994).
Google Scholar
Feng, J. et al. Coupling and decoupling of soil carbon and nutrient cycles across an aridity gradient in the drylands of northern China: Evidence from ecoenzymatic stoichiometry. Global Biogeochem. Cycles. 33, 559–569 (2019).
Google Scholar
Cui, Y. et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ. 658, 1440–1451 (2019).
Google Scholar
Jing, X. et al. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 141, 107657 (2020).
Google Scholar
Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).
Google Scholar
Zhou, L. et al. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 34, 1461–1471 (2020).
Google Scholar
Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).
Google Scholar
Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 1–10 (2017).
Google Scholar
Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. Proc. Natl. Acad. Sci. USA 115, 4015–4020 (2018).
Google Scholar
Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).
Google Scholar
Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795–798 (2009).
Google Scholar
Moorhead, D. L., Sinsabaugh, R. L., Hill, B. H. & Weintraub, M. N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 93, 1–7 (2016).
Google Scholar
Cui, Y. et al. Stoichiometric models of microbial metabolic limitation in soil systems. Global Ecol. Biogeogr. 30, 2297–2311 (2021).
Google Scholar
Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
Google Scholar
Schulte-Uebbing, L. & Vries, W. D. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biol. 24, 416–431 (2017).
Google Scholar
Richardson, S. J., Peltzer, D. A., Allen, R. B. & Parfitt, M. G. L. Rapid development of phosphorus limitation in temperate rainforest along the Franz josef soil chronosequence. Oecologia 139, 267–276 (2004).
Google Scholar
Augusto, L., Achat, D. L., Jonard, M., Vidal, D. & Ringeval, B. Soil parent material-a major driver of plant nutrient limitations in terrestrial ecosystems. Global Change Biol. 23, 3808–3824 (2017).
Google Scholar
Yao, Q. et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat. Ecol. Evol. 2, 499–509 (2018).
Google Scholar
Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013).
Google Scholar
Kuzyakov, Y. & Xu, X. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol. 198, 656–669 (2013).
Google Scholar
Cui, Y. et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol. Biochem. 116, 11–21 (2018).
Google Scholar
Cui, Y. et al. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 147, 107814 (2020).
Google Scholar
Johnson, J. et al. The response of soil solution chemistry in european forests to decreasing acid deposition. Global Change Biol. 24, 3603–3619 (2018).
Google Scholar
Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).
Google Scholar
Penuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 1–10 (2013).
Yu, G. et al. Stabilization of atmospheric nitrogen deposition in china over the past decade. Nat. Geosci. 12, 424–429 (2019).
Google Scholar
Cui, Y. et al. Decreasing microbial phosphorus limitation increases soil carbon release. Geoderma 419, 115868 (2022).
Google Scholar
Sinsabaugh, R. L., Moorhead, D. L., Xu, X. & Litvak, M. E. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytol. 214, 1518–1526 (2017).
Google Scholar
Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biol. 27, 2633–2644 (2021).
Google Scholar
Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C. & Wookey, P. A. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biol. 26, 5178–5188 (2020).
Google Scholar
Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).
Google Scholar
Rosinger, C., Rousk, J. & Sandén, H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms?-A critical assessment in two subtropical soils. Soil Biol. Biochem. 128, 115–126 (2019).
Google Scholar
Mori, T. Does ecoenzymatic stoichiometry really determine microbial nutrient limitations? Soil Biol. Biochem. 146, 107816 (2020).
Google Scholar
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
Google Scholar
Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum, forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).
Google Scholar
German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).
Google Scholar
Lindstrom, M. J. & Bates, D. M. Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data. J. Am. Stat. Assoc. 83, 1014–1022 (1988).
Legendre, P. & Legendre, L. Numerical ecology, 2nd English edition. Elsevier Science BV, Amsterdam (1998).
Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R News 8/1, 20–25 (2008).
Toms, J. D. & Lesperance, M. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).
Google Scholar
Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).
Google Scholar
Breiman, L. Random forests. Machine Learning 45, 5–32 (2001).
Google Scholar
Sanchez, G., Trinchera, L. & Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.7 edn (2016).
Development Core Team R. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016).
Source: Ecology - nature.com