in

Spatial distribution pattern of dominant tree species in different disturbance plots in the Changbai Mountain

  • Wiegand, T., Gunatilleke, S. & Gunatilleke, N. Species Associations in a Heterogeneous Sri Lankan Dipterocarp Forest. Am. Nat. 170, E77–E95. https://doi.org/10.1890/06-1350.1 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, J. et al. Spatial patterns and associations of six congeneric species in an old-growth temperate forest. Acta Oecol. 11, 29–38. https://doi.org/10.1016/j.actao.2009.09.005 (2010).

    ADS 
    Article 

    Google Scholar 

  • Pretzsch, H. et al. Comparison between the productivity of pure and mixed stands of Norway spruce and European beech along an ecological gradient. Ann. For. Sci. 67, 712–712. https://doi.org/10.1051/forest/2010037 (2010).

    Article 

    Google Scholar 

  • Zhu, J., Kang, H., Tan, H., Xu, M. & Wang, J. Natural regeneration characteristics ofPinus sylvestris var.mongolica forests on sandy land in Honghuaerji, China. J. For. Res. 16, 253–259. https://doi.org/10.1007/BF02858184 (2005).

  • Felton, A., Felton, A. M., Wood, J. & Lindenmayer, D. B. Vegetation structure, phenology, and regeneration in the natural and anthropogenic tree-fall gaps of a reduced-impact logged subtropical Bolivian forest. For. Ecol. Manage. 235, 186–193. https://doi.org/10.1016/j.foreco.2006.08.011 (2006).

    Article 

    Google Scholar 

  • Man, R., Kayahara, G. J., Rice, J. A. & MacDonald, G. B. Eleven-year responses of a boreal mixedwood stand to partial harvesting: Light, vegetation, and regeneration dynamics. For. Ecol. Manage. 255, 697–706. https://doi.org/10.1016/j.foreco.2007.09.043 (2008).

    Article 

    Google Scholar 

  • Xiang, W., Lei, X. & Zhang, X. Modelling tree recruitment in relation to climate and competition in semi-natural Larix-Picea-Abies forests in northeast China. For. Ecol. Manage. 382, 100–109. https://doi.org/10.1016/j.foreco.2016.09.050 (2016).

    Article 

    Google Scholar 

  • Zhang, M., Liu, Y., Guo, W., Kang, X. & Zhao, H. Spatial associations and species collocation of dominant tree spscies in a natural spruce-fir mixed forest of Changbai Mountains in Northeastern China. Appl. Ecol. Env. Res. 17, 6213–6225. https://doi.org/10.15666/aeer/1703_62136225 (2019).

  • Garbarino, M., Weisberg, P. J. & Motta, R. Interacting effects of physical environment and anthropogenic disturbances on the structure of European larch (Larix decidua Mill.) forests. For. Ecol. Manag. 257, 1794–1802. https://doi.org/10.1016/j.foreco.2008.12.031 (2009).

  • Gourlet-Fleury, S. et al. Silvicultural disturbance has little impact on tree species diversity in a Central African moist forest. For. Ecol. Manage. 304, 322–332. https://doi.org/10.1016/j.foreco.2013.05.021 (2013).

    Article 

    Google Scholar 

  • Yu, D. & Han, S. Ecosystem service status and changes of degraded natural reserves—A study from the Changbai Mountain Natural Reserve China. Ecosyst. Serv. 20, 56–65. https://doi.org/10.1016/j.ecoser.2016.06.009 (2016).

    Article 

    Google Scholar 

  • Moreau, G. et al. Long-term tree and stand growth dynamics after thinning of various intensities in a temperate mixed forest. For. Ecol. Manage. 473, 118311. https://doi.org/10.1016/j.foreco.2020.118311 (2020).

    Article 

    Google Scholar 

  • Yan, Y., Zhang, C., Wang, Y., Zhao, X. & Gadow, K. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession. Ecol. Evol. 5, 4287–4299. https://doi.org/10.1002/ece3.1688 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bai, F. et al. Long-term protection effects of national reserve to forest vegetation in 4 decades: Biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve China. Sci. China Ser. C 51, 948–958. https://doi.org/10.1007/s11427-008-0122-9 (2008).

    Article 

    Google Scholar 

  • Liu, Q., Li, X., Ma, Z. & Takeuchi, N. Monitoring forest dynamics using satellite imagery—a case study in the natural reserve of Changbai Mountain in China. For. Ecol. Manage. 210, 25–37. https://doi.org/10.1016/j.foreco.2005.02.025 (2005).

    Article 

    Google Scholar 

  • Hao, H. et al. Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region. Glob. Ecol. Conserv. 12, 158–165. https://doi.org/10.1016/j.gecco.2017.11.001 (2017).

    Article 

    Google Scholar 

  • Das Gupta, S. & Pinno, B. D. Spatial patterns and competition in trees in early successional reclaimed and natural boreal forests. Acta Oecol. 92, 138–147. https://doi.org/10.1016/j.actao.2018.05.003 (2018).

  • Hao, Z., Zhang, J., Song, B., Ye, J. & Li, B. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. For. Ecol. Manage. 252, 1–11. https://doi.org/10.1016/j.foreco.2007.06.026 (2007).

    Article 

    Google Scholar 

  • Zhao, H., Kang, X., Guo, Z., Yang, H. & Xu, M. Species interactions in spruce-fir mixed stands and implications for enrichment planting in the Changbai Mountains China. Mount. Res. Dev. 32, 187–196. https://doi.org/10.1659/MRD-JOURNAL-D-11-00125.1 (2012).

    Article 

    Google Scholar 

  • Li, Y., Hui, G., Wang, H., Zhang, G. & Ye, S. Selection priority for harvested trees according to stand structural indices. iForest 10, 561–566, DOI: https://doi.org/10.3832/ifor2115-010 (2017).

  • Zhang, Y., Drobyshev, I., Gao, L., Zhao, X. & Bergeron, Y. Disturbance and regeneration dynamics of a mixed Korean pine dominated forest on Changbai Mountain North-Eastern China. Dendrochronologia 32, 21–31. https://doi.org/10.1016/j.dendro.2013.06.003 (2014).

    Article 

    Google Scholar 

  • Zhang, M. et al. Community stability for spruce-fir forest at different succession stages in Changbai Mountains, Northeast China. Chin. J. Appl. Ecol. 26, 1609–1616. https://doi.org/10.13287/j.1001-9332.20150331.024 (2015).

  • Gong, Z., Kang, X. & Gu, L. Quantitative division of succession and spatial patterns among different stand developmental stages in Changbai Mountains. J. Mt. Sci. 16, 2063–2078. https://doi.org/10.1007/s11629-018-5142-8 (2019).

    Article 

    Google Scholar 

  • Hu, Y., Min, Z., Gao, Y. & Feng, Q. Effects of selective cutting on stand growth and structure for natural mixed spruce (Picea koraiensis )-Fir (Abies nephrolepis) forests. Scientia Silvae Sinicae 47, 15–24. https://doi.org/10.11707/j.1001-7488.20110203 (2011).

    Article 

    Google Scholar 

  • Hubbell, S. P. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283, 554–557. https://doi.org/10.1126/science.283.5401.554 (1999).

  • Seidler, T. G. & Plotkin, J. B. Seed dispersal and spatial pattern in tropical trees. PLoS Biol. 4, e344. https://doi.org/10.1371/journal.pbio.0040344 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—a semi-natural forest in Denmark. For. Ecol. Manage. 406, 391–401. https://doi.org/10.1016/j.foreco.2017.10.020 (2017).

    Article 

    Google Scholar 

  • Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, E. A. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404, 493–495. https://doi.org/10.1038/35006630 (2000).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wiegand, T., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N. & Huth, A. How individual species structure diversity in tropical forests. Proc. Natl. Acad. Sci. 104, 19029–19033. https://doi.org/10.1073/pnas.0705621104 (2007).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, T., Yan, Q., Wang, J. & Zhu, J. Restoring temperate secondary forests by promoting sprout regeneration: Effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance. For. Ecol. Manage. 429, 267–277. https://doi.org/10.1016/j.foreco.2018.07.025 (2018).

    Article 

    Google Scholar 

  • Zhang, M., Kang, X., Meng, J. & Zhang, L. Distribution patterns and associations of dominant tree species in a mixed coniferous-broadleaf forest in the Changbai Mountains. J. Mt. Sci. 12, 659–670. https://doi.org/10.1007/s11629-013-2795-1 (2015).

    Article 

    Google Scholar 

  • Navarro-Cerrillo, R. M. et al. Structure and spatio-temporal dynamics of cedar forests along a management gradient in the Middle Atlas Morocco. For. Ecol. Manag. 289, 341–353. https://doi.org/10.1016/j.foreco.2012.10.011 (2013).

    Article 

    Google Scholar 

  • Condit, R. Spatial patterns in the distribution of tropical tree species. Science 288, 1414–1418. https://doi.org/10.1126/science.288.5470.1414 (2000).

  • del Río, M. et al. Characterization of the structure, dynamics, and productivity of mixed-species stands: Review and perspectives. Eur. J. For. Res. 135, 23–49. https://doi.org/10.1007/s10342-015-0927-6 (2016).

    Article 

    Google Scholar 

  • Wiegand, K., Jeltsch, F. & Ward, D. Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana ?. J. Veg. Sci. 11, 473–484. https://doi.org/10.2307/3246577 (2000).

    Article 

    Google Scholar 

  • Hui, G. & Pommerening, A. Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. For. Ecol. Manage. 316, 125–138. https://doi.org/10.1016/j.foreco.2013.07.029 (2014).

    Article 

    Google Scholar 

  • Graz, F. P. The behaviour of the species mingling index M sp in relation to species dominance and dispersion. Eur. J. For. Res. 123, 87–92. https://doi.org/10.1007/s10342-004-0016-8 (2004).

    Article 

    Google Scholar 

  • Zhang, M. Spatial association and optimum adjacent distribution of trees in a mixed coniferous-broadleaf forest in northeastern China. Appl. Ecol. Environ. Res. 15, 1551–1564. https://doi.org/10.15666/aeer/1503_15511564 (2017).

  • Hou, J. H., Mi, X. C., Liu, C. R. & Ma, K. P. Spatial patterns and associations in a Quercus-Betula forest in northern China. J. Veg. Sci. 15, 407–414. https://doi.org/10.1111/j.1654-1103.2004.tb02278.x (2004).

    Article 

    Google Scholar 

  • Boyden, S., Binkley, D. & Shepperd, W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. For. Ecol. Manage. 219, 43–55. https://doi.org/10.1016/j.foreco.2005.08.041 (2005).

    Article 

    Google Scholar 

  • Li, J., Niu, S. & Liu, Y. Forest Ecology. Higher Education Press, (2010).

  • Hui, G. et al. Theory and practice of structure-based forest management. Science Press, (2020).

  • Gong, Z. et al. Interspecific association among arbor species in two succession stages of spruce-fir conifer and broadleaved mixed forest in Changbai Mountains, northeastern China. J. Beijing For. Univ. 33, 28–33 (2011).

    Google Scholar 

  • Suzuki, S. N., Kachi, N. & Suzuki, J.-I. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies Forest: Analyses using spatial autocorrelation and the mark correlation function. Ann. Bot. 102, 435–441. https://doi.org/10.1093/aob/mcn113 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shao, G. et al. Integrating stand and landscape decisions for multi-purposes of forest harvesting. For. Ecol. Manage. 207, 233–243. https://doi.org/10.1016/j.foreco.2004.10.029 (2005).

    Article 

    Google Scholar 

  • Dai, L. et al. Changes in forest structure and composition on Changbai Mountain in Northeast China. Ann. For. Sci. 68, 889–897. https://doi.org/10.1007/s13595-011-0095-x (2011).

    Article 

    Google Scholar 

  • Liu, Y. et al. Determining suitable selection cutting intensities based on long-term observations on aboveground forest carbon, growth, and stand structure in Changbai Mountain, Northeast China. Scand. J. For. Res. 29, 436–454. https://doi.org/10.1080/02827581.2014.919352 (2014).

    CAS 
    Article 

    Google Scholar 

  • K. von Gadow and & Hui, G. Y. Characterizing Forest spatial structure and diversity. Proc. of an international workshop organized at the University of Lund, Sweden, 20–30 (2001).

  • Baddeley, A. & Turner, R. spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Soft. 12, 1–42. https://doi.org/10.18637/jss.v012.i06 (2005).

  • Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns: Illian/Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470725160 (2007).

  • Wiegand, T. & Moloney, K. A. Handbook of Spatial Point-Pattern Analysis in Ecology. Chapman and Hall/CRC. https://doi.org/10.1201/b16195 (2013).

  • Martínez, I., Wiegand, T., González-Taboada, F. & Obeso, J. R. Spatial associations among tree species in a temperate forest community in North-western Spain. For. Ecol. Manage. 260, 456–465. https://doi.org/10.1016/j.foreco.2010.04.039 (2010).

    Article 

    Google Scholar 

  • Wang, X. et al. Species associations in an old-growth temperate forest in north-eastern China. J. Ecol. 98, 674–686. https://doi.org/10.1111/j.1365-2745.2010.01644.x (2010).

    Article 

    Google Scholar 

  • Getzin, S., Wiegand, T. & Hubbell, S. P. Stochastically driven adult–recruit associations of tree species on Barro Colorado Island. Proc. R. Soc. B. 281, 20140922. https://doi.org/10.1098/rspb.2014.0922 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakashizuka, T. Species coexistence in temperate, mixed deciduous forests. Trends Ecol. Evol. 16, 205–210 (2001).

    CAS 
    Article 

    Google Scholar 

  • Mugglestone, M. & Renshaw, E. Spectral tests of randomness for spatial point patterns. Environ. Ecol. Stat. 237–251. https://doi.org/10.1023/A:1011339607376 (2001).

  • Stoyan, D. & Stoyan, H. Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley, (1994).

  • Liu, P. et al. Competition and facilitation co-regulate the spatial patterns of boreal tree species in Kanas of Xinjiang, northwest China. For. Ecol. Manage. 467, 118167. https://doi.org/10.1016/j.foreco.2020.118167 (2020).

    Article 

    Google Scholar 

  • Wiegand, T., Moloney, A. & Rings, K. circles, and null-models for point pattern analysis in ecology. Oikos 104, 209–229. https://doi.org/10.1111/j.0030-1299.2004.12497.x (2004).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Influence of suspended inorganic particles (kaolinite) on eggs and larvae of the pelagic shrimp Lucensosergia lucens

    Stranded assets could exact steep costs on fossil energy producers and investors