in

Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2

  • Pascolini-Campbell, M., Reager, J. T., Chandanpurkar, H. A. & Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 593, 543–547 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. 117, 9216–9222 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 2016GL071921 (2017).

    Google Scholar 

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Change 10, 691–695 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Humphrey, V. et al. Sensitivity of atmospheric CO 2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Hsu, J. S., Powell, J. & Adler, P. B. Sensitivity of mean annual primary production to precipitation. Glob. Change Biol. 18, 2246–2255 (2012).

    ADS 
    Article 

    Google Scholar 

  • Zuidema, P. A. et al. Recent CO2 rise has modified the sensitivity of tropical tree growth to rainfall and temperature. Glob. Change Biol. 26, 4028–4041 (2020).

    ADS 
    Article 

    Google Scholar 

  • Bansal, S., James, J. J. & Sheley, R. L. The effects of precipitation and soil type on three invasive annual grasses in the western United States. J. Arid Environ. 104, 38–42 (2014).

    ADS 
    Article 

    Google Scholar 

  • Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • O’Connor, J. C. et al. Forests buffer against variations in precipitation. Glob. Change Biol., 27, 4686–4696 (2021).

  • Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).

    ADS 
    Article 

    Google Scholar 

  • Zhang, W. et al. Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nat. Commun. 10, 671 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adams, M. A., Buckley, T. N., Binkley, D., Neumann, M. & Turnbull, T. L. CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests. Nat. Commun. 12, 5194 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2021).

  • Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232–250 (2021).

    ADS 
    Article 

    Google Scholar 

  • Zhang, W., Brandt, M., Guichard, F., Tian, Q. & Fensholt, R. Using long-term daily satellite based rainfall data (1983–2015) to analyze spatio-temporal changes in the sahelian rainfall regime. J. Hydrol. 550, 427–440 (2017).

    ADS 
    Article 

    Google Scholar 

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    ADS 
    Article 

    Google Scholar 

  • Huntzinger, D. N. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – part 1: overview and experimental design. Geosci. Model Dev. 6, 2121–2133 (2013).

    ADS 
    Article 

    Google Scholar 

  • Porporato, A., Daly, E. & Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Naturalist 164, 625–632 (2004).

    Article 

    Google Scholar 

  • Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO 2 reveals distinct response patterns between disturbed and undisturbed vegetation: vegetation responses to elevated CO2. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).

    CAS 
    Article 

    Google Scholar 

  • Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).

    ADS 
    Article 

    Google Scholar 

  • Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO 2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. 113, E7222–E7230 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • González de Andrés, E. et al. Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J. Ecol. 106, 59–75 (2018).

    Article 
    CAS 

    Google Scholar 

  • Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 27, 3336–3349 (2021).

    Article 

    Google Scholar 

  • Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. 113, 12757–12762 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions: Photosynthesis and stomatal conductance responses to rising [CO2]. Plant, Cell Environ. 30, 258–270 (2007).

    CAS 
    Article 

    Google Scholar 

  • Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytologist 221, 693–705 (2019).

    Article 

    Google Scholar 

  • Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).

    ADS 
    Article 

    Google Scholar 

  • Thompson, S. E., Harman, C. J., Heine, P. & Katul, G. G. Vegetation-infiltration relationships across climatic and soil type gradients: vegetation-infiltration relationships. J. Geophys. Res. 115, G02023 (2010).

    ADS 

    Google Scholar 

  • Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Article 

    Google Scholar 

  • Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. N. Phytologist 201, 1086–1095 (2014).

    CAS 
    Article 

    Google Scholar 

  • Cui, J. et al. Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nat. Commun. 11, 5184 (2020).

  • Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cui, J. et al. Vegetation response to rising CO2 amplifies contrasts in water resources between global wet and dry land Areas. Geophys. Res. Lett. 48, e2021GL094293 (2021).

  • Yang, Y. et al. Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: Accounting for aboveground and belowground vegetation-CO2 effects. Hydrol. Earth Syst. Sci. 25, 3411–3427 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Keenan, T. F. et al. A constraint on historic growth in global photosynthesis due to increasing CO2. Nature 600, 253–258 (2022).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Sang, Y. et al. Comment on “Recent global decline of CO 2 fertilization effects on vegetation photosynthesis”. Science 373, eabg4420 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought‐induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).

    ADS 
    Article 

    Google Scholar 

  • Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).

  • Ahlstrom, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    ADS 
    Article 

    Google Scholar 

  • Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).

    ADS 
    Article 

    Google Scholar 

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    ADS 
    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

  • Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl Climatol. 115, 15–40 (2014).

    ADS 
    Article 

    Google Scholar 

  • Prado, R. & West, M. Time series: modeling, computation, and inference (CRC Press, 2010).

  • West, M. & Harrison, J. Bayesian forecasting and dynamic models (Springer, 1997).

  • Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Chang. 9, 880–885 (2019).

    ADS 
    Article 

    Google Scholar 

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Influence of suspended inorganic particles (kaolinite) on eggs and larvae of the pelagic shrimp Lucensosergia lucens

    Stranded assets could exact steep costs on fossil energy producers and investors