in

Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association

  • Henneron, L., Cros, C., Picon-Cochard, C., Rahimian, V. & Fontaine, S. Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition. J. Ecol. 108, 528–545 (2020).

    CAS 
    Article 

    Google Scholar 

  • Arft, A. M. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).

    Google Scholar 

  • Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110-+ (2021).

    PubMed 
    Article 

    Google Scholar 

  • Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root: shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    ADS 
    Article 

    Google Scholar 

  • Shipley, B. & Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 16, 326–331 (2002).

    Article 

    Google Scholar 

  • Eziz, A. et al. Drought effect on plant biomass allocation: a meta‐analysis. Ecol. Evolution 7, 11002–11010 (2017).

    Article 

    Google Scholar 

  • Yan, Z. et al. Biomass allocation in response to nitrogen and phosphorus availability: Insight from experimental manipulations of Arabidopsis thaliana. Front. Plant Sci. 10, 598 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, C. et al. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecol. Evol. 9, 12193–12201 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kim, J.-S. et al. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nat. Geosci. 10, 572–576 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. N. Phytol. 188, 187–198 (2010).

    Article 

    Google Scholar 

  • Fernandez, C. W. et al. Ectomycorrhizal fungal response to warming is linked to poor host performance at the boreal-temperate ecotone. Glob. Change Biol. 23, 1598–1609 (2017).

    ADS 
    Article 

    Google Scholar 

  • Keller, J. A. & Shea, K. Warming and shifting phenology accelerate an invasive plant life cycle. Ecology 102, e03219 (2020).

    PubMed 

    Google Scholar 

  • Cavagnaro, R. A., Oyarzabal, M., Oesterheld, M. & Grimoldi, A. A. Screening of biomass production of cultivated forage grasses in response to mycorrhizal symbiosis under nutritional deficit conditions. Grassl. Sci. 60, 178–184 (2014).

    Article 

    Google Scholar 

  • Rasheed, M. U. et al. The responses of shoot-root-rhizosphere continuum to simultaneous fertilizer addition, warming, ozone and herbivory in young Scots pine seedlings in a high latitude field experiment. Soil Biol. Biochem. 114, 279–294 (2017).

    CAS 
    Article 

    Google Scholar 

  • Xu, M., Liu, M., Xue, X. & Zhai, D. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. J. Arid Land 8, 773–786 (2016).

    Article 

    Google Scholar 

  • Zhou, X., Talley, M. & Luo, Y. Biomass, litter, and soil respiration along a precipitation gradient in southern great plains, USA. Ecosystems 12, 1369–1380 (2009).

    CAS 
    Article 

    Google Scholar 

  • Hertel, D., Strecker, T., Mueller-Haubold, H. & Leuschner, C. Fine root biomass and dynamics in beech forests across a precipitation gradient – is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol. 101, 1183–1200 (2013).

    Article 

    Google Scholar 

  • Zhou, L. et al. Responses of biomass allocation to multi-factor global change: a global synthesis. Agriculture, Ecosyst. Environ. 304, 107115 (2020).

    CAS 
    Article 

    Google Scholar 

  • Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. N. Phytol. 193, 30–50 (2012).

    CAS 
    Article 

    Google Scholar 

  • Gorka, S., Dietrich, M., Mayerhofer, W., Gabriel, R. & Kaiser, C. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front. Microbiol. 10, 168 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).

    ADS 
    Article 

    Google Scholar 

  • Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Vegetation Sci. 13, 378–387 (2010).

    Google Scholar 

  • Johnson, N. C., Rowland, D. L., Corkidi, L. & Allen, E. B. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology 89, 2868–2878 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Xia, J., Yuan, W., Wang, Y. P. & Zhang, Q. Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Sci. Rep. 7, 3341 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Litton, C. M. & Giardina, C. P. Below-ground carbon flux and partitioning: global patterns and response to temperature. Funct. Ecol. 22, 941–954 (2008).

    Article 

    Google Scholar 

  • Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Hovenden, M. J. et al. Warming and elevated CO2 affect the relationship between seed mass, germinability and seedling growth in Austrodanthonia caespitosa, a dominant Australian grass. Glob. Change Biol. 14, 1633–1641 (2008).

    ADS 
    Article 

    Google Scholar 

  • Olszyk, D. M. et al. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Can. J. For. Res. 33, 269–278 (2003).

    CAS 
    Article 

    Google Scholar 

  • Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hagedorn, F., Gavazov, K. & Alexander, J. M. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science 365, 1119-+ (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pinto, R. S. & Reynolds, M. P. Common genetic basis for canopy temperature depression under heat and drought stress associated with optimized root distribution in bread wheat. Theor. Appl. Genet. 128, 575–585 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rasse, D. P., Rumpel, C. & Dignac, M. F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 269, 341–356 (2005).

    CAS 
    Article 

    Google Scholar 

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    CAS 
    Article 

    Google Scholar 

  • Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wang, P., Huang, K. & Hu, S. Distinct fine‐root responses to precipitation changes in herbaceous and woody plants: a meta‐analysis. N. Phytol. 225, 1491–1499 (2020).

    Article 

    Google Scholar 

  • Ma, Z. et al. Evolutionary history resolves global organization of root functional traits. Nature 555, 94–97 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prieto, I., Armas, C. & Pugnaire, F. I. Water release through plant roots: new insights into its consequences at the plant and ecosystem level. N. Phytol. 193, 830–841 (2012).

    Article 

    Google Scholar 

  • Bai, W. et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob. Change Biol. 16, 1306–1316 (2010).

    ADS 
    Article 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Turner, B. L. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96, 698–702 (2008).

    CAS 
    Article 

    Google Scholar 

  • Phillips, L. A., Ward, V. & Jones, M. D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J. 8, 699–713 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gonzalez-Meler, M. A., Silva, L. B. C., Dias-De-Oliveira, E., Flower, C. E. & Martinez, C. A. Experimental air warming of a stylosanthes capitata, vogel dominated tropical pasture affects soil respiration and nitrogen dynamics. Front. Plant Sci. 8, 46 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carrillo, Y., Pendall, E., Dijkstra, F. A., Morgan, J. A. & Newcomb, J. M. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347, 339–350 (2011).

    CAS 
    Article 

    Google Scholar 

  • An, J. et al. Physiological and growth responses to experimental warming in first-year seedlings of deciduous tree species. Turkish J. Agriculture Forestry 41, 175–182 (2017).

    CAS 
    Article 

    Google Scholar 

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Liu, R., Li, Y., Wang, Y., Ma, J. & Cieraad, E. Variation of water use efficiency across seasons and years: Different role of herbaceous plants in desert ecosystem. Sci. Total Environ. 647, 827–835 (2018).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Duarte, A. G. & Maherali, H. A meta-analysis of the effects of climate change on the mutualism between plants and arbuscular mycorrhizal fungi. Ecol. Evol. 12, https://doi.org/10.1002/ece3.8518 (2022).

  • Bastos, A. & Fleischer, K. Fungi are key to CO2 response of soil. Nature 591, 532–534 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Wang, X., Peng, L. & Jin, Z. Effects of AMF inoculation on growth and photosynthetic physiological characteristics of Sinocalycanthus chinensis under conditions of simulated warming. Acta Ecologica Sin. 36, 5204–5214 (2016).

    CAS 

    Google Scholar 

  • Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, 6480 (2020).

    Article 
    CAS 

    Google Scholar 

  • Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159–8159 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • IPCC. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1535 (Cambridge University Press, 2021).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Task, G. Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) (2000).

  • Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article 

    Google Scholar 

  • Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87, 53–63 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin: Statistical Software for Meta-analysis (Sinauer Associates, Incorporated, 2000).

  • Kembel, S. W. et al. Picante: integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2018).

    Article 
    CAS 

    Google Scholar 

  • Calcagno, V. & De, C. M. Glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).

  • Pinheiro, J. C., Bates, D. J., Debroy, S. D. & Sakar, D. nlme: Linear and nonlinear mixed effects models. R. package version 3, 1–117 (2009).

    Google Scholar 

  • Viechtbauer, W. Metafor: meta-analysis package for R. J. Stat. Softw. 2010, 1–10 (2010).

    Google Scholar 

  • Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, https://doi.org/10.18637/jss.v048.i02 (2012).


  • Source: Ecology - nature.com

    From bridges to DNA: civil engineering across disciplines

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia