in

Spatial point patterns generation on remote sensing data using convolutional neural networks with further statistical analysis

  • Appel, M., Lahn, F., Buytaert, W. & Pebesma, E. Open and scalable analytics of large earth observation datasets: From scenes to multidimensional arrays using SCIDB and GDAL. ISPRS J. Photogramm. Remote Sens. 138, 47–56 (2018).

    ADS 
    Article 

    Google Scholar 

  • Audebert, N., Saux, B. L. & Lefvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 140, 20–32 (2018).

    ADS 
    Article 

    Google Scholar 

  • Ball J. E., Anderson D. T., & Chan C. S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. https://doi.org/10.1117/1.JRS.11.042609 (2017).

  • Proceedings of the Royal Society B: Biological Sciences. Vol. 282. 20141657 (2015).

  • Velázquez, E., Paine, C. T., May, F. & Wiegand, T. Linking trait similarity to interspecific spatial associations in a moist tropical forest. J. Veg. Sci. 26, 1068–1079 (2015).

    Article 

    Google Scholar 

  • Ben-Said, M. Spatial point-pattern analysis as a powerful tool in identifying pattern-process relationships in plant ecology: an updated review. Ecol. Process. 10, 1–23 (2021).

    Article 

    Google Scholar 

  • Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22 (1947).

    Article 

    Google Scholar 

  • Pielou, E.C. Mathematical Ecology; Number 574.50151 P613 1977. (Wiley, 1977).

  • Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article 

    Google Scholar 

  • Brown, C., Law, R., Illian, J. B. & Burslem, D. F. Linking ecological processes with spatial and non-spatial patterns in plant communities. J. Ecol. 99, 1402–1414 (2011).

    Article 

    Google Scholar 

  • Detto, M. & Muller-Landau, H. C. Fitting ecological process models to spatial patterns using scalewise variances and moment equations. Am. Nat. 181, E68–E82 (2013).

    Article 

    Google Scholar 

  • May, F., Huth, A., & Wiegand, T. Moving beyond abundance distributions: neutral theory and spatial patterns in a tropical forest. Proceedings. Biological sciences 282(1802), 20141657. https://doi.org/10.1098/rspb.2014.1657 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kerr, J. T. & Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 18, 299–305 (2003).

    Article 

    Google Scholar 

  • Gillespie, T. W., Foody, G. M., Rocchini, D., Giorgi, A. P. & Saatchi, S. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32, 203–221 (2008).

    Article 

    Google Scholar 

  • He, J., Zhang, L., Wang, Q. & Li, Z. Using diffusion geometric coordinates for hyperspectral imagery representation. IEEE Geosci. Remote Sens. Lett. 6(4), 767–771 (2009).

    ADS 
    Article 

    Google Scholar 

  • Lechner, A.M., Foody, G.M., & Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2.5, 405–412 (2020).

  • Arévalo, P., Olofsson, P. & Woodcock, C. E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sens. Environ. 238, 111051 (2020).

    ADS 
    Article 

    Google Scholar 

  • Gillespie, T.W. et al. Measuring and modelling biodiversity from space. Prog. Phys. Geogr. 32.2, 203–221 (2008).

  • Lausch, A., Erasmi, S., King, D. J., Magdon, P. & Heurich, M. Understanding forest health with remote sensing-part II—A review of approaches and data models. Remote Sens. 9(2), 129 (2017).

    ADS 
    Article 

    Google Scholar 

  • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., et al. Monitoring vegetation systems in the Great Plains with ERTS. in NASA Special Publication. Vol. 351. 309 (1974).

  • Chen, J. M. & Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 15, 421–429 (1992).

    Article 

    Google Scholar 

  • Zha, Y., Gao, J. & Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 24, 583–594 (2003).

    Article 

    Google Scholar 

  • Zhao, S. et al. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. Int. J. Appl. Earth Obs. Geoinf. 12, 351–358 (2010).

    ADS 

    Google Scholar 

  • Gao, B. C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).

    ADS 
    Article 

    Google Scholar 

  • Wan, Z. & Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905 (1996).

    ADS 
    Article 

    Google Scholar 

  • Xu, H., Wang, Y., Guan, H., Shi, T. & Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sensing 11, 2345 (2019).

    ADS 
    Article 

    Google Scholar 

  • List of Top 10 Sources of Free Remote Sensing Data (2017).

  • USGS Earth Explorer: Download Free Landsat Imagery (2021).

  • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 65, 2–16 (2010).

    ADS 
    Article 

    Google Scholar 

  • Li, M., Zang, S., Zhang, B., Li, S. & Wu, C. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 47, 389–411 (2014).

    Article 

    Google Scholar 

  • Gómez-Chova, L., Tuia, D., Moser, G. & Camps-Valls, G. Multimodal classification of remote sensing images: A review and future directions. Proc. IEEE 103, 1560–1584 (2015).

    Article 

    Google Scholar 

  • Alajlan, N., Bazi, Y., Melgani, F. & Yager, R. R. Fusion of supervised and unsupervised learning for improved classification of hyperspectral images. Inf. Sci. 217, 39–55 (2012).

    Article 

    Google Scholar 

  • Csillik, O. Fast segmentation and classification of very high resolution remote sensing data using SLIC superpixels. Remote Sens. 9, 243 (2017).

    ADS 
    Article 

    Google Scholar 

  • Thanh Noi, P. & Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 18, 18 (2018).

    ADS 
    Article 

    Google Scholar 

  • Jiang, S., Zhao, H., Wu, W., & Tan, Q. A novel framework for remote sensing image scene classification. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42 (2018).

  • Baddeley, A. Spatial Point Process Modelling and Its Applications. Vol. 20. (Publicacions de la Universitat Jaume I, 2004).

  • Vasudevan, K., Eckel, S., Fleischer, F., Schmidt, V. & Cook, F. Statistical analysis of spatial point patterns on deep seismic reflection data: A preliminary test. Geophys. J. Int. 171, 823–840 (2007).

    ADS 
    Article 

    Google Scholar 

  • Cheng, Y. & Luo, J. Statistical analysis of metastable pitting events on carbon steel. Br. Corros. J. 35, 125–130 (2000).

    CAS 
    Article 

    Google Scholar 

  • Velázquez, E., Martínez, I., Getzin, S., Moloney, K. A. & Wiegand, T. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 39, 1042–1055 (2016).

    Article 

    Google Scholar 

  • Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).

    Article 

    Google Scholar 

  • Stoyan, D., & Penttinen, A. Recent applications of point process methods in forestry statistics. Stat. Sci. 2000, 61–78 (2000).

  • Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. Statistical Analysis and Modelling of Spatial Point Patterns. Vol. 70. (Wiley, 2008).

  • Brodrick, P. G., Davies, A. B. & Asner, G. P. Uncovering ecological patterns with convolutional neural networks. Trends Ecol. Evol. 34, 734–745 (2019).

    Article 

    Google Scholar 

  • Liu, S., Luo, H., Tu, Y., He, Z., & Li, J. Wide contextual residual network with active learning for remote sensing image classification. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. 7145–7148 (IEEE, 2018).

  • Lee, H. & Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855 (2017).

    ADS 
    MathSciNet 
    Article 

    Google Scholar 

  • Cheng, G., Xie, X., Han, J., Guo, L. & Xia, G. S. Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 3735–3756 (2020).

    ADS 
    Article 

    Google Scholar 

  • Lewy, D., & Mandziuk, J. An overview of mixing augmentation methods and augmentation strategies. arXiv preprint arXiv:2107.09887 (2021).

  • Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q.V. Autoaugment: Learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018).

  • Naveed, H. Survey: Image mixing and deleting for data augmentation. arXiv preprint arXiv:2106.07085 (2021).

  • Freeman, I., Roese-Koerner, L. & Kummert, A. Effnet: An efficient structure for convolutional neural networks. 25th IEEE international conference on image processing (ICIP). IEEE 2018, 6–10 (2018).

    Google Scholar 

  • LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article 

    Google Scholar 

  • Raeisi, M., Bonneu, F. & Gabriel, E. A spatio-temporal multi-scale model for Geyer saturation point process: Application to forest fire occurrences. Spatial Stat. 41, 100492 (2021).

    MathSciNet 
    Article 

    Google Scholar 

  • Baddeley, A. Analysing spatial point patterns in R. in Workshop Notes Version. Vol. 3 (2008).


  • Source: Ecology - nature.com

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia

    Using seismology for groundwater management