in

Greater bee diversity is needed to maintain crop pollination over time

  • Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xu, S. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc. Biol. Sci. 287, 20202063 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barnes, A. D. et al. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150279 (2016).

    Article 

    Google Scholar 

  • Manning, P. & Cutler, G. C. Ecosystem functioning is more strongly impaired by reducing dung beetle abundance than by reducing species richness. Agric. Ecosyst. Environ. 264, 9–14 (2018).

    Article 

    Google Scholar 

  • van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. Camb. Philos. Soc. 94, 1220–1245 (2019).

    PubMed 

    Google Scholar 

  • Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: the role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).

    Article 

    Google Scholar 

  • Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).

    Google Scholar 

  • Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).

    Article 
    CAS 

    Google Scholar 

  • Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. & Pywell, R. F. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. Ecology 99, 1771–1782 (2018).

    PubMed 
    Article 

    Google Scholar 

  • McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Genung, M. A. et al. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services. Ecology 98, 1807–1816 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Kleijn, D. et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6, 7414 (2015).

  • Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).

    Article 

    Google Scholar 

  • Lohbeck, M., Bongers, F., Martinez-Ramos, M. & Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97, 2772–2779 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Balvanera, P., Kremen, C. & Martínez-Ramos, M. Applying community structure analysis to ecosystem function: examples from pollination and carbon storage. Ecol. Appl. 15, 360–375 (2005).

    Article 

    Google Scholar 

  • Maureaud, A. et al. Biodiversity–ecosystem functioning relationships in fish communities: biomass is related to evenness and the environment, not to species richness. Proc. Biol. Sci. 286, 20191189 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Genung, M. A., Fox, J. & Winfree, R. Species loss drives ecosystem function in experiments, but in nature the importance of species loss depends on dominance. Glob. Ecol. Biogeogr. 29, 1531–1541 (2020).

    Article 

    Google Scholar 

  • Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84, 2628–2642 (2003).

    Article 

    Google Scholar 

  • Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article 

    Google Scholar 

  • Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

    Article 

    Google Scholar 

  • Thompson, P. L., Isbell, F., Loreau, M., O’Connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. Biol. Sci. 285, 20180038 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, J. & Cardinale, B. J. Scaling up biodiversity–ecosystem function relationships across space and over time. Ecology 101, e03166 (2020).

  • Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Albrecht, J. et al. Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nat. Ecol. Evol. 5, 1582–1593 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shanafelt, D. W. et al. Biodiversity, productivity, and the spatial insurance hypothesis revisited. J. Theor. Biol. 380, 426–435 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).

    CAS 
    Article 

    Google Scholar 

  • Tilman, D. Biodiversity: population versus ecosystem stability. Ecology 77, 350–363 (1996).

    Article 

    Google Scholar 

  • Herrera, C. M. Variation in mutualisms: the spatiotemporal mosaic of a pollinator assemblage. Biol. J. Linn. Soc. Lond. 35, 95–125 (1988).

    Article 

    Google Scholar 

  • McCormack, M. L., Adams, T. S., Smithwick, E. A. H. & Eissenstat, D. M. Variability in root production, phenology, and turnover rate among 12 temperate tree species. Ecology 95, 2224–2235 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Wright, K. W., Vanderbilt, K. L., Inouye, D. W., Bertelsen, C. D. & Crimmins, T. M. Turnover and reliability of flower communities in extreme environments: insights from long-term phenology data sets. J. Arid Environ. 115, 27–34 (2015).

    Article 

    Google Scholar 

  • Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Iserbyt, S. & Rasmont, P. The effect of climatic variation on abundance and diversity of bumblebees: a ten years survey in a mountain hotspot. Ann. Soc. Entomol. Fr. 48, 261–273 (2012).

    Article 

    Google Scholar 

  • Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ernest, S. K. M. & Brown, J. H. Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82, 2118–2132 (2001).

    Article 

    Google Scholar 

  • Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. USA 108, 17034–17039 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Awasthi, A., Singh, M., Soni, S. K., Singh, R. & Kalra, A. Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J. 8, 2445–2452 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tuck, S. L. et al. The value of biodiversity for the functioning of tropical forests: Insurance effects during the first decade of the Sabah biodiversity experiment. Proc. Biol. Sci. 283, 20161451 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl Acad. Sci. USA 112, 3427–3432 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Benjamin, F. E. & Winfree, R. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environ. Entomol. 43, 1574–1583 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).

    Article 

    Google Scholar 

  • Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).

    Article 

    Google Scholar 

  • Baumgärtner, S. The insurance value of biodiversity in the provision of ecosystem services. Nat. Resour. Model. 20, 87–127 (2007).

    Article 

    Google Scholar 

  • Manning, P. et al. in Advances in Ecological Research (eds Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 323–356 (Academic Press, 2019).

  • Naeem, S. Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45 (1998).

    Article 

    Google Scholar 

  • CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).

    Article 

    Google Scholar 

  • Liu, D., Chang, P.-H. S., Power, S. A., Bell, J. N. B. & Manning, P. Changes in plant species abundance alter the multifunctionality and functional space of heathland ecosystems. New Phytol. 232, 1238–1249 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buschke, F. T., Hagan, J. G., Santini, L. & Coetzee, B. W. T. Random population fluctuations bias the Living Planet Index. Nat. Ecol. Evol. 5, 1145–1152 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Almond, R. E. A., Grooten, M. & Peterson, T. Living Planet Report 2020: Bending the Curve of Biodiversity Loss (World Wildlife Fund, 2020).

  • Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. The effects of honey bee and bumble bee pollination on fruit set and abortion of cucumber and watermelon. Am. Bee. J. 137, 386–391 (1997).

    Google Scholar 

  • Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Tamburini, G., Bommarco, R., Kleijn, D., van der Putten, W. H. & Marini, L. Pollination contribution to crop yield is often context-dependent: a review of experimental evidence. Agric. Ecosyst. Environ. 280, 16–23 (2019).

    Article 

    Google Scholar 

  • Stanghellini, M. S., Ambrose, J. T. & Schultheis, J. R. Seed production in watermelon: a comparison between two commercially available pollinators. HortScience 33, 28–30 (1998).

    Article 

    Google Scholar 

  • Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. Biol. Sci. 287, 20200922 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenleaf, S. S. & Kremen, C. Wild bees enhance honey bees’ pollination of hybrid sunflower. Proc. Natl Acad. Sci. USA 103, 13890–13895 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sáez, A. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc. Biol. Sci. 289, 20220086 (2022).

    PubMed 

    Google Scholar 

  • Brittain, C., Williams, N., Kremen, C. & Klein, A. M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. Biol. Sci. 280, 20122767 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Houlahan, J. E. et al. Negative relationships between species richness and temporal variability are common but weak in natural systems. Ecology 99, 2592–2604 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Winfree, R. Global change, biodiversity, and ecosystem services: what can we learn from studies of pollination? Basic Appl. Ecol. 14, 453–460 (2013).

    Article 

    Google Scholar 

  • Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haupt, R. L. & Haupt, S. E. Practical Genetic Algorithms (Wiley, 2004).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. R package version 0.7.0 https://doi.org/10.5281/zenodo.3952174 (2020).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  • Brooks, M. et al. glmmTMB: Generalized linear mixed models using template model builder. R package version 1.1.3 https://glmmtmb.github.io/glmmTMB/ (2022).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).


  • Source: Ecology - nature.com

    New data from the first discovered paleoparadoxiid (Desmostylia) specimen shed light into the morphological variation of the genus Neoparadoxia

    Using seismology for groundwater management