Trivers, R. L. Parental investment and sexual selection. in Sexual selection and the descent of man 136–179 (Aldine, 1972).
Evans, R. M. The relationship between parental input and investment. Anim. Behav. 39, 797–798 (1990).
Google Scholar
Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).
Google Scholar
Willson, M. F. & Pianka, E. R. Sexual selection, sex ratio and mating system. Am. Nat. 97, 405–407 (1963).
Google Scholar
Trivers, R. L. & Willard, D. E. Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92 (1973).
Google Scholar
Clutton-Brock, T. H., Major, M., Albon, S. D. & Guinness, F. E. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).
Google Scholar
Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. Early determinants of lifetime reproductive success differ between the sexes in red deer. Proc. R. Soc. B-Biol. Sci. 266, 1655–1661 (1999).
Google Scholar
Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Reproductive success in male and female red deer. in Reproductive success 325–343 (University of Chicago Press, 1988).
Pérez-Barbería, F. J. & Yearsley, J. M. Sexual selection for fighting skills as a driver of sexual segregation in polygynous ungulates: an evolutionary model. Anim. Behav. 80, 745–755 (2010).
Google Scholar
Pérez-Barbería, F. J. et al. Heat stress reduces growth rate of red deer calf: Climate warming implications. PLoS ONE 15, e0233809 (2020).
Google Scholar
Nussey, D. H. et al. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population. Am. Nat. 174, 342–357 (2009).
Google Scholar
Geist, V. Deer of the World: Their Evolution, Behavior & Ecology (Stackpole Books, 1998).
Ricklefs, R. E. Evolutionary theories of aging: Confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am. Nat. 152, 24–44 (1998).
Google Scholar
Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).
Google Scholar
Oftedal, O. T. Pregnancy and lactation. in Bioenergetics of wild herbivores 215–238 (CRC-Press, 1985).
Linn, J. G. Factors Affecting the Composition of Milk from Dairy Cows. in Designing Foods: Animal Product Options in the Marketplace (National Academies Press (US), 1988).
Hinde, K., Power, M. L. & Oftedal, O. T. Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation. Am. J. Phys. Anthropol. 138, 148–157 (2009).
Google Scholar
Gomendio, M., Clutton-Brock, T. H., Albon, S. D., Guinness, F. E. & Simpson, M. J. Mammalian sex ratios and variation in costs of rearing sons and daughters. Nature 343, 261–263 (1990).
Google Scholar
Berube, C. H., Festa-Bianchet, M. & Jorgenson, J. T. Reproductive costs of sons and daughters in Rocky Mountain bighorn sheep. Behav. Ecol. 7, 60–68 (1996).
Google Scholar
Landete-Castillejos, T., García, A., López-Serrano, F. R. & Gallego, L. Maternal quality and differences in milk production and composition for male and female Iberian red deer calves (Cervus elaphus hispanicus). Behav. Ecol. Sociobiol. 57, 267–274 (2005).
Google Scholar
Hinde, K. First-time macaque mothers bias milk composition in favor of sons. Curr. Biol. 17, R958–R959 (2007).
Google Scholar
Hinde, K. Richer milk for sons but more milk for daughters: Sex-biased investment during lactation varies with maternal life history in rhesus macaques. Am. J. Hum. Biol. 21, 512–519 (2009).
Google Scholar
Powe, C. E., Knott, C. D. & Conklin-Brittain, N. Infant sex predicts breast milk energy content. Am. J. Hum. Biol. 22, 50–54 (2010).
Google Scholar
Fujita, M. et al. In poor families, mothers’ milk is richer for daughters than sons: A test of Trivers-Willard hypothesis in agropastoral settlements in Northern Kenya. Am. J. Phys. Anthropol. 149, 52–59 (2012).
Google Scholar
Robert, K. A. & Braun, S. Milk composition during lactation suggests a mechanism for male biased allocation of maternal resources in the tammar wallaby (Macropus eugenii). PLoS ONE 7, e51099 (2012).
Google Scholar
Oftedal, O. T. Pregnancy and lactation. Bioenerg. Wild Herbiv. https://doi.org/10.1201/9781351070218-10 (2018).
Google Scholar
Rogers, G. & Stewart, J. The effects of some nutritional and non-nutritional factors on milk protein concentration and yield [dairy cattle]. Aust. J. Dairy Technol. 26–32 (1982).
Lubritz, D. L., Forrest, K. & Robison, O. W. Age of cow and age of dam effects on milk production of hereford cows. J. Anim. Sci. 67, 2544–2549 (1989).
Google Scholar
Khan, M. S. & Shook, G. E. Effects of age on milk yield: Time trends and method of adjustment. J. Dairy Sci. 79, 1057–1064 (1996).
Google Scholar
Jenness, R. Biochemical and nutritional aspects of milk and colostrum. in Lactation / edited by Bruce L. Larson ; written by Ralph R. Anderson … [et al.] 164–197 (Iowa State University, 1985).
Ng-Kwai-Hang, K. F., Hayes, J. F., Moxley, J. E. & Monardes, H. G. Environmental influences on protein content and composition of bovine milk. J. Dairy Sci. 65, 1993–1998 (1982).
Google Scholar
Kroeker, E. M., Ng-Kwai-Hang, K. F., Hayes, J. F. & Moxley, J. E. Effect of β-lactoglobulin variant and environmental factors on variation in the detailed composition of bovine milk serum proteins. J. Dairy Sci. 68, 1637–1641 (1985).
Google Scholar
Pérez-Barbería, F. J. et al. Water sprinkling as a tool for heat abatement in farmed Iberian red deer: Effects on calf growth and behaviour. PLoS ONE 16, e0249540 (2021).
Google Scholar
Abecia, J. A. & Palacios, C. Ewes giving birth to female lambs produce more milk than ewes giving birth to male lambs. Ital. J. Anim. Sci. 17, 736–739 (2018).
Google Scholar
Hinde, K., Carpenter, A. J., Clay, J. S. & Bradford, B. J. Holsteins favor heifers, not bulls: Biased milk production programmed during pregnancy as a function of fetal sex. PLoS ONE 9, e86169 (2014).
Google Scholar
Thakkar, S. K. et al. Dynamics of human milk nutrient composition of women from Singapore with a special focus on lipids. Am. J. Hum. Biol. 25, 770–779 (2013).
Google Scholar
Quinn, E. A. No evidence for sex biases in milk macronutrients, energy, or breastfeeding frequency in a sample of Filipino mothers. Am. J. Phys. Anthropol. 152, 209–216 (2013).
Google Scholar
Ono, K. A. & Boness, D. J. Sexual dimorphism in sea lion pups: Differential maternal investment, or sex-specific differences in energy allocation?. Behav. Ecol. Sociobiol. 38, 31–41 (1996).
Google Scholar
Skibiel, A. L., Downing, L. M., Orr, T. J. & Hood, W. R. The evolution of the nutrient composition of mammalian milks. J. Anim. Ecol. 82, 1254–1264 (2013).
Google Scholar
Mitoulas, L. R. et al. Variation in fat, lactose and protein in human milk over 24h and throughout the first year of lactation. Br. J. Nutr. 88, 29–37 (2002).
Google Scholar
Jenkins, T. C. & McGuire, M. A. Major advances in nutrition: Impact on milk composition. J. Dairy Sci. 89, 1302–1310 (2006).
Google Scholar
Hobbs, N. T., Baker, D. L., Bear, G. D. & Bowden, D. C. Ungulate grazing in sagebrush grassland: Effects of resource competition on secondary production. Ecol. Appl. 6, 218–227 (1996).
Google Scholar
Robbins, A. M., Robbins, M. M., Gerald-Steklis, N. & Steklis, H. D. Age-related patterns of reproductive success among female mountain gorillas. Am. J. Phys. Anthropol. 131, 511–521 (2006).
Google Scholar
Sunderland, N., Heffernan, S., Thomson, S. & Hennessy, A. Maternal parity affects neonatal survival rate in a colony of captive bred baboons (Papio hamadryas). J. Med. Primatol. 37, 223–228 (2008).
Google Scholar
Landete-Castillejos, T. et al. Age-related body weight constraints on prenatal and milk provisioning in Iberian red deer (Cervus elaphus hispanicus) affect allocation of maternal resources. Theriogenology 71, 400–407 (2009).
Google Scholar
Bercovitch, F. B., Widdig, A. & Nürnberg, P. Maternal investment in rhesus macaques (Macaca mulatta): Reproductive costs and consequences of raising sons. Behav. Ecol. Sociobiol. 48, 1–11 (2000).
Google Scholar
López-Quintanilla, M. Comportamiento Social y Maternofilial del Ciervo en Cautividad (Universidad de Castilla-La Mancha, 2022).
Adam, C. L., Kyle, C. E. & Young, P. Growth and reproductive development of red deer calves (Cervus elaphus) born out-of-season. Anim. Sci. 55, 265–270 (1992).
Google Scholar
Landete-Castillejos, T., Garcia, A. & Gallego, L. Calf growth in captive Iberian red deer (Cervus elaphus hispanicus): Effects of birth date and hind milk production and composition. J. Anim. Sci. 79, 1085–1092 (2001).
Google Scholar
Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Great expectations – dominance, breeding success and offspring sex-ratios in red deer. Anim. Behav. 34, 460–471 (1986).
Google Scholar
Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).
Google Scholar
Youngner, V. B. & McKell, C. M. The Biology and Utilization of Grasses (Academic Press, 1972).
Pinares-Patiño, C. S. Methane emission from forage-fed sheep, a study of variation between animals. PhD thesis. Massey University, Wellington, New Zealand. (Massey University, 2000).
van Tassell, C. P., Wiggans, G. R. & Norman, H. D. Method R estimates of heritability for milk, fat, and protein yields of United States dairy cattle. J. Dairy Sci. 82, 2231–2237 (1999).
Google Scholar
Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 78, 2771–2777 (2000).
Google Scholar
Perrin, D. R. 709. The calorific value of milk of different species. J. Dairy Res. 25, 215–220 (1958).
Google Scholar
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing, v. 3.4.1. (R Foundation for Statistical Computing, 2017).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. R package version 3.1–131. Retrieved on 229 July 2017 from http://CRAN.R-project.org/package=nlme. (2017).
Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).
Google Scholar
Source: Ecology - nature.com