IPCC (ed.). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2021).
Lionello, P. & Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 18, 1481–1493. https://doi.org/10.1007/s10113-018-1290-1 (2018).
Google Scholar
Tuel, A. & Eltahir, E. A. B. Why is the Mediterranean a climate change hot spot?. J. Clim. 33, 5829–5843. https://doi.org/10.1175/JCLI-D-19-0910.1 (2020).
Google Scholar
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638. https://doi.org/10.1038/s41559-020-01303-0 (2020).
Google Scholar
Ruffault, J. et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 10, 13790. https://doi.org/10.1038/s41598-020-70069-z (2020).
Google Scholar
Tramblay, Y. et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210, 103348. https://doi.org/10.1016/j.earscirev.2020.103348 (2020).
Google Scholar
Nistor, M.-M. & Mîndrescu, M. Climate change effect on groundwater resources in Emilia-Romagna region: an improved assessment through NISTOR-CEGW method. Quatern. Int. 504, 214–228. https://doi.org/10.1016/j.quaint.2017.11.018 (2019).
Google Scholar
Paoletti, E. Impact of ozone on Mediterranean forests: a review. Environ. Pollut. (Barking Essex: 1987) 144, 463–474. https://doi.org/10.1016/j.envpol.2005.12.051 (2006).
Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x (2012).
Google Scholar
Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2002549117 (2021).
Google Scholar
Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102. https://doi.org/10.1038/s41586-022-04644-x (2022).
Google Scholar
Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946. https://doi.org/10.1038/s41467-021-26181-3 (2021).
Google Scholar
Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conserv. Divers. 15, 168–180. https://doi.org/10.1111/icad.12555 (2021).
Google Scholar
Hoshika, Y. et al. Species-specific variation of photosynthesis and mesophyll conductance to ozone and drought in three Mediterranean oaks. Physiol. Plant. 174, e13639. https://doi.org/10.1111/ppl.13639 (2022).
Google Scholar
Haberstroh, S. et al. Terpenoid emissions of two Mediterranean woody species in response to drought stress. Front. Plant Sci. 9, 1071. https://doi.org/10.3389/fpls.2018.01071 (2018).
Google Scholar
Toscano, S., Ferrante, A. & Romano, D. Response of Mediterranean ornamental plants to drought stress. Horticulturae 5, 6. https://doi.org/10.3390/horticulturae5010006 (2019).
Google Scholar
Gely, C., Laurance, S. G. W. & Stork, N. E. How do herbivorous insects respond to drought stress in trees?. Biol. Rev. Camb. Philos. Soc. 95, 434–448. https://doi.org/10.1111/brv.12571 (2020).
Google Scholar
Teixeira, N. C., Valim, J. O. S., Oliveira, M. G. A. & Campos, W. G. Combined effects of soil silicon and drought stress on host plant chemical and ultrastructural quality for leaf-chewing and sap-sucking insects. J. Agro. Crop Sci. 206, 187–201. https://doi.org/10.1111/jac.12386 (2020).
Google Scholar
Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680. https://doi.org/10.1038/s41598-019-42171-4 (2019).
Google Scholar
Haeler, E., Fiedler, K. & Grill, A. What prolongs a butterfly’s life?: Trade-offs between dormancy, fecundity and body size. PLoS ONE 9, e111955. https://doi.org/10.1371/journal.pone.0111955 (2014).
Google Scholar
Yela, J. L. & Herrera, C. M. Seasonality and life cycles of woody plant-feeding noctuid moths (Lepidoptera: Noctuidae) in Mediterranean habitats. Ecol. Entomol. 18, 259–269. https://doi.org/10.1111/j.1365-2311.1993.tb01099.x (1993).
Google Scholar
Uhl, B., Wölfling, M. & Fiedler, K. Local, forest stand and landscape-scale correlates of plant communities in isolated coastal forest reserves. Plant Biosyst. 155, 457–469. https://doi.org/10.1080/11263504.2020.1762776 (2021).
Google Scholar
Andreatta, G. Proposal for the establishment of a “silvio-museum” in the Ravenna historical pinewoods. Forest@-J. Silvicult. For. Ecol. 7, 237–246 (2011).
Wölfling, M., Uhl, B. & Fiedler, K. Multi-decadal surveys in a Mediterranean forest reserve: Do succession and isolation drive moth species richness?. Nat. Conserv. 35, 25–40. https://doi.org/10.3897/natureconservation.35.32934 (2019).
Google Scholar
Uhl, B., Wölfling, M. & Fiedler, K. Understanding small-scale insect diversity patterns inside two nature reserves: the role of local and landscape factors. Biodivers Conserv 29, 2399–2418. https://doi.org/10.1007/s10531-020-01981-z (2020).
Google Scholar
Uhl, B., Wölfling, M., Fiala, B. & Fiedler, K. Micro-moth communities mirror environmental stress gradients within a Mediterranean nature reserve. Basic Appl. Ecol. 17, 273–281. https://doi.org/10.1016/j.baae.2015.10.002 (2016).
Google Scholar
Axmacher, J. C. & Fiedler, K. Manual versus automatic moth sampling at equal light sources: a comparison of catches from Mt. Kilimanjaro. J. Lepidopterists’ Soc. 58, 196–202 (2004).
Brehm, G. & Axmacher, J. C. A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ. Entomol. 35, 757–764. https://doi.org/10.1603/0046-225X-35.3.757 (2006).
Google Scholar
van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281. https://doi.org/10.1016/j.biocon.2011.06.004 (2011).
Google Scholar
Niermann, J. & Brehm, G. The number of moths caught by light traps is affected more by microhabitat than the type of UV lamp used in grassland habitat. Eur. J. Entomol. 119, 36–42 ; https://doi.org/10.14411/eje.2022.004 (2022).
Potocky, P. et al. Life-history traits of Central European moths: gradients of variation and their association with rarity and threats. Insect Conserv. Divers. 11, 493–505. https://doi.org/10.1111/icad.12291 (2018).
Google Scholar
R Core Team. R package version 2.5–7 https://www.r-project.org/ (2021).
McLeod, A. I. Kendall: Kendall rank correlation and Mann-Kendall trend test https://CRAN.R-project.org/package=Kendall (2011).
Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).
Google Scholar
Pike, N. Using false discovery rates for multiple comparisons in ecology and evolution. Methods Ecol. Evol. 2, 278–282. https://doi.org/10.1111/j.2041-210X.2010.00061.x (2011).
Google Scholar
Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://cran.r-project.org/web/packages/vegan/index.html (2020).
De Luca, P., Messori, G., Faranda, D., Ward, P. J. & Coumou, D. Compound warm–dry and cold–wet events over the Mediterranean. Earth System Dynamics 11(3), 793–805 (2020).
Google Scholar
Manning, C. et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett. 14(9), 094006 (2019).
Google Scholar
Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4, 19–32. https://doi.org/10.1042/ETLS20190134 (2020).
Google Scholar
Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).
Google Scholar
Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285. https://doi.org/10.1111/j.1365-2656.2012.02029.x (2013).
Google Scholar
Conrad, K. F., Woiwod, I. P. & Perry, J. N. Long-term decline in abundance and distribution of the garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 106, 329–337. https://doi.org/10.1016/S0006-3207(01)00258-0 (2002).
Google Scholar
Mathbout, S., Lopez-Bustins, J. A., Royé, D., Martin-Vide, J. & Benhamrouche, A. Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int. J. Climatol. 40, 1435–1455. https://doi.org/10.1002/joc.6278 (2020).
Google Scholar
Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184. https://doi.org/10.1111/1365-2664.12959 (2018).
Google Scholar
Thomsen, P. F. et al. Resource specialists lead local insect community turnover associated with temperature – analysis of an 18-year full-seasonal record of moths and beetles. J. Anim. Ecol. 85, 251–261. https://doi.org/10.1111/1365-2656.12452 (2016).
Google Scholar
Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17, 49–54. https://doi.org/10.1016/j.cois.2016.07.002 (2016).
Google Scholar
Du Plessis, H., Schlemmer, M.-L. & van den Berg, J. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects https://doi.org/10.3390/insects11040228 (2020).
Google Scholar
Jallow, M. F. A. & Matsumura, M. Influence of temperature on the rate of development of Helicoverpa armigera (Huebner) (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 36, 427–430. https://doi.org/10.1303/aez.2001.427 (2001).
Google Scholar
Mironidis, G. K. & Savopoulou-Soultani, M. Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environ. Entomol. 37, 16–28. https://doi.org/10.1093/ee/37.1.16 (2008).
Google Scholar
Sokame, B. M. et al. Influence of temperature on the interaction for resource utilization between Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and a community of Lepidopteran maize stemborers larvae. Insects https://doi.org/10.3390/insects11020073 (2020).
Google Scholar
Johansson, F., Orizaola, G. & Nilsson-Örtman, V. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Sci. Rep. 10, 8822. https://doi.org/10.1038/s41598-020-65608-7 (2020).
Google Scholar
White, T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105. https://doi.org/10.1007/BF00379790 (1984).
Google Scholar
Price, P. W. The plant vigor hypothesis and herbivore attack. Oikos 62, 244. https://doi.org/10.2307/3545270 (1991).
Google Scholar
Sarfraz, R. M., Dosdall, L. M. & Keddie, A. B. Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. Eur. J. Entomol. 106, 583–594. https://doi.org/10.14411/eje.2009.073 (2009).
Google Scholar
Source: Ecology - nature.com