in

Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds

  • Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Caro, T. & Koneru, M. Towards an ecology of protective coloration. Biol. Rev. 96, 611–641 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).

    Article 

    Google Scholar 

  • Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. Ser. B 340, 215–225 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).

    Article 

    Google Scholar 

  • Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lind, O., Mitkus, M., Olsson, P. & Kelber, A. Ultraviolet vision in birds: the importance of transparent eye media. Proc. R. Soc. Lond. Ser. B 281, 20132209 (2014).

    Google Scholar 

  • Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, 2414 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stevens, M. & Cuthill, I. C. Hidden messages: are ultraviolet signals a special channel in avian communication? Bioscience 57, 501–507 (2007).

    Article 

    Google Scholar 

  • Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. Ultraviolet signals in birds are special. Proc. R. Soc. Lond. Ser. B 270, 61–67 (2003).

    Article 

    Google Scholar 

  • Eaton, M. D. & Lanyon, S. M. The ubiquity of avian ultraviolet plumage reflectance. Proc. R. Soc. Lond. Ser. B 270, 1721–1726 (2003).

    Article 

    Google Scholar 

  • Gomez, D. & Théry, M. Influence of ambient light on the evolution of colour signals: comparative analysis of a Neotropical rainforest bird community. Ecol. Lett. 7, 279–284 (2004).

    Article 

    Google Scholar 

  • Mullen, P. & Pohland, G. Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150, 59–68 (2008).

    Article 

    Google Scholar 

  • Burns, K. J. & Shultz, A. J. Widespread cryptic dichromatism and ultraviolet reflectance in the largest radiation of Neotropical songbirds: Implications of accounting for avian vision in the study of plumage evolution. Auk 129, 211–221 (2012).

    Article 

    Google Scholar 

  • Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K. & Hastad, O. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc. R. Soc. Lond. Ser. B 279, 1269–1276 (2012).

    Google Scholar 

  • Bleiweiss, R. Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolut. Biol. 41, 404–424 (2014).

    Article 

    Google Scholar 

  • Lind, O. & Delhey, K. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds. J. Evol. Biol. 28, 715–722 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bennett, A. T. D. & Cuthill, I. C. Ultraviolet vision in birds: what is its function? Vis. Res 34, 1471–1478 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Delhey, K. Revealing the colourful side of birds: spatial distribution of conspicuous plumage colours on the body of Australian birds. J. Avian Biol. 51, e02222 (2020).

    Article 

    Google Scholar 

  • Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Miller, E. T., Leighton, G. M., Freeman, B. G., Lees, A. C. & Ligon, R. A. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat. Commun. 10, 1602 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl Acad. Sci. USA 110, 10687–10692 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).

    Article 

    Google Scholar 

  • Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 15, 555–560 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).

    Article 

    Google Scholar 

  • Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).

    Article 

    Google Scholar 

  • Aljabar, P., Heckemann, R. A., Hammers, A., Hajnal, J. V. & Rueckert, D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baiker, M. et al. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Med. Image Anal. 14, 723–737 (2010).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).

    ADS 
    Article 

    Google Scholar 

  • Kumar, Y. H. S., Manohar, N. & Chethan, H. K. Animal classification system: a block based approach. Procedia Computer Sci. 45, 336–343 (2015).

    Article 

    Google Scholar 

  • Unger, J., Merhof, D. & Renner, S. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evol. Biol. 16, 248 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kohler, R. A segmentation system based on thresholding. Computer Graph. Image Process. 15, 319–338 (1981).

    Article 

    Google Scholar 

  • Adams, R. & Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 18, 641–647 (1994).

    Article 

    Google Scholar 

  • Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Boykov, Y. Y. & Jolly, M. P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. in Proceedings Eighth IEEE International Conference on Computer Vision (2001).

  • Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 1802, 02611 (2018).

    Google Scholar 

  • Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv 1606, 00915 (2017).

    Google Scholar 

  • Chen, L. C., Papandreou, G., Schroff, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 1706, 05587 (2017).

    Google Scholar 

  • Everingham, M. et al. The PASCAL Visual Object Classes challenge—a retrospective. Int. J. Computer Vis. 111, 98–136 (2015).

    Article 

    Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. in Advances In Neural Information Processing Systems (2012).

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).

  • Szegedy, C. et al. Going deeper with convolutions. arXiv 1409, 4842 (2014).

    ADS 

    Google Scholar 

  • Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. arXiv 1603, 06937 (2016).

    Google Scholar 

  • Wei, S. E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose machines. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).

  • Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2015).

  • Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).

    PubMed 
    Article 

    Google Scholar 

  • Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a Neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Philos. Soc. 94, 1294–1316 (2019).

    PubMed 

    Google Scholar 

  • Passarotto, A., Rodríguez‐Caballero, E., Cruz-Miralles, Á., Avilés Jesús, M. & Sheard, C. Ecogeographical patterns in owl plumage colouration: Climate and vegetation cover predict global colour variation. Glob. Ecol. Biogeogr. 31, 515–530 (2022).

    Article 

    Google Scholar 

  • Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Galván, I., Rodríguez-Martínez, S., Carrascal, L. M. & Portugal, S. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).

    Article 

    Google Scholar 

  • Delhey, K., Dale, J., Valcu, M. & Kempenaers, B. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol. Lett. 22, 726–736 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Håstad, O., Victorsson, J. & Ödeen, A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl Acad. Sci. USA 102, 6391–6394 (2005).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lind, O., Henze, M. J., Kelber, A. & Osorio, D. Coevolution of coloration and colour vision? Philos. Trans. R. Soc. Lond. Ser. B 372, 20160338 (2017).

    Article 
    CAS 

    Google Scholar 

  • Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. arXiv 01105, 2017 (1612).

    Google Scholar 

  • Zoph, B. et al. Rethinking pre-training and self-training. arXiv 2006, 06882 (2020).

    Google Scholar 

  • Chang, Y. L. & Li, X. Adaptive image region-growing. IEEE Trans. Image Process. 3, 868–872 (1994).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fan, J., Yau, D. K. Y., Elmagarmid, A. K. & Aref, W. G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10, 1454–1466 (2001).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Joulin, A., van der Maaten, L., Jabri, A. & Vasilache, N. Learning visual features from large weakly supervised data. arXiv 1511, 02251 (2015).

    Google Scholar 

  • Hestness, J. et al. Deep learning scaling is predictable, empirically. arXiv 1712, 00409 (2017).

    Google Scholar 

  • Hudson, L. N. et al. Inselect: automating the digitization of natural history collections. PLoS ONE 10, e0143402 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. Semantic segmentation of herbarium specimens using deep learning techniques. in Computational Science and Technology (2020).

  • Cordts, M. et al. The Cityscapes dataset for semantic urban scene understanding. arXiv 01685, 2016 (1604).

    Google Scholar 

  • Deng, J. et al. ImageNet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009).

  • Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D human pose estimation: new benchmark and state of the art analysis. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014).

  • Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 120, 122–125 (2000).

    Google Scholar 

  • Ruder, S. An overview of gradient descent optimization algorithms. arXiv 1609, 04747 (2016).

    Google Scholar 

  • Kingma, D. P. & Ba, J. L. ADAM: a method for stochastic optimisation. arXiv 1412, 6980 (2014).

    ADS 

    Google Scholar 

  • Loshchilov, I. & Hutter, F. SGDR: stochastic gradient descent with warm restarts. arXiv 1608, 03983 (2016).

    Google Scholar 

  • Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 1603, 04467 (2016).

    Google Scholar 

  • He, Y. et al. Code for: Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds. https://doi.org/10.5281/zenodo.6916988 (2022).

  • Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 1207, 0580 (2012).

    Google Scholar 

  • van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, J. S. Digital image smoothing and the signam filter. Computer Vis., Graph., Image Process. 24, 255–269 (1983).

    Article 

    Google Scholar 

  • Haralick, R. M., Sternberg, S. R. & Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9, 532–550 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979).

    Article 

    Google Scholar 

  • Sezgin, M. & Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004).

    ADS 
    Article 

    Google Scholar 

  • Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour models. Int. J. Computer Vis. 1, 321–331 (1988).

    MATH 
    Article 

    Google Scholar 

  • Coffin, D. DCRAW V. 9.27. https://www.cybercom.net/~dcoffin/dcraw/ (2016).

  • Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • He, Y. PhenoLearn v.1.0.1. https://doi.org/10.5281/zenodo.6950322 (2022).

  • Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).

  • Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evolution 10, 1097–1107 (2019).

    Article 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article 

    Google Scholar 

  • Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol. Biol. 11, 313 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. Ser. B 281, 20140298 (2014).

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Age as a primary driver of the gut microbial composition and function in wild harbor seals

    Analysis of the impact of success on three dimensions of sustainability in 173 countries