Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).
Google Scholar
Atkinson, C. L., Capps, K. A., Rugenski, A. T. & Vanni, M. J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rev. 92, 2003–2023 (2016).
Google Scholar
Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).
Google Scholar
Vanni, M. J., Boros, G. & McIntyre, P. B. When are fish sources vs. sinks of nutrients in lake ecosystems?. Ecology 94(10), 2195–206 (2013).
Google Scholar
Lovell, T. Nutrition and Feeding of Fish Vol. 260 (Van Nostrand Reinhold, 1989).
Google Scholar
Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: The potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).
Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
Google Scholar
Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Nat. Acad. Sci. USA 112(8), 2617–2622 (2015).
Google Scholar
West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).
Google Scholar
Alves, J. M. et al. Stoichiometry of benthic invertebrate nutrient recycling: Interspecific variation and the role of body mass. Aquat. Ecol. 44, 421–430 (2010).
Google Scholar
Hall, R. O. J., Koch, B. J., Marshall, M. C., Taylor, B. W. & Tronstad, L. M. In How Body Size Mediates the Role of Animals in Nutrient Cycling in Aquatic Ecosystems (eds Hildrew, A. G. et al.) 286–305 (Cambridge University Press, 2007).
Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc. Nat. Acad. Sci. USA 112, 2640–2647 (2015).
Google Scholar
Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: A global synthesis. Ecology 97, 3460–3471 (2016).
Google Scholar
Burel, C. et al. Effects of temperature on growth and metabolism in juvenile turbot. J. Fish Biol. 49, 678–692 (1996).
Google Scholar
Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12(5), 369–384 (2009).
Google Scholar
McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Nat. Acad. Sci. USA 104, 4461–4466 (2007).
Google Scholar
Barneche, D. R. & Allen, A. P. Embracing general theory and taxon-level idiosyncrasies to explain nutrient recycling. Proc. Nat. Acad. Sci. USA 112, 6248–6249 (2015).
Google Scholar
Glaholt, S. P. Jr. & Vanni, M. J. Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshw. Biol. 50, 1864–1881 (2005).
Google Scholar
McIntyre, P. B. & Flecker, A. S. Ecological Stoichiometry as an integrative framework in stream fish ecology. Am. Fish. Soc. Symp. 73, 539–558 (2010).
Pough, F. H., Janis, C. M. & Heiser, J. B. Vertebrate Life (Prentice-Hall, 2005).
Griffiths, D. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshw. Fish 15, 86–95 (2006).
Google Scholar
McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?. Ecology 89(8), 2335–2346 (2008).
Google Scholar
Cross, W. F., Benstead, J. P., Rosemond, A. D. & Wallace, J. B. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett. 6, 721–732 (2003).
Google Scholar
Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78(6), 1816–1831 (1997).
Google Scholar
Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293 (2002).
Google Scholar
Fritschie, K. J. & Olden, J. D. Disentangling the influences of mean body size and size structure on ecosystem functioning: an example of nutrient recycling by a non-native crayfish. Ecol. Evol. 6, 159–169 (2016).
Google Scholar
Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).
Google Scholar
White, C. R. & Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Natl Acad. Sci. USA 100, 4046–4049 (2003).
Google Scholar
Capellini, I., Venditti, C. & Barton, R. A. Phylogeny and metabolic scaling in mammals. Ecology 91, 2783–2793 (2010).
Google Scholar
DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 107, 12941–12945 (2010).
Google Scholar
Tátrai, I. Influence of temperature, rate of feeding and body weight on nitrogen metabolism of bream Abramis brama L. Comp. Biochem. Physiol. 83A, 543–547 (1986).
Google Scholar
Tsui, T. K. N. et al. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J. Exp. Biol. 205, 651–659 (2002).
Google Scholar
Zakés, Z., Szczepkowski, M., Demska-Zakés, K. & Jesiolowski, M. Oxygen consumption and ammonia excretion by juvenile pike, Esox lucius L. Arch. Pol. Fish. 15, 79–92 (2007).
Liu, F., Yang, S. & Chen, H. Effect of temperature, stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis x M. chrysops). Aquac. Res. 40, 450–455 (2009).
Google Scholar
Currie, S. et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 88, 43–58 (2010).
Google Scholar
Dockray, J. J., Reid, S. D. & Wood, C. M. Effects of elevated summer temperatures and reduced pH on metabolism and growth of juvenile rainbow trout (Oncorhynchus mykiss) on unlimited ration. Can. J. Fish. Aquat. Sci. 53, 2752–2763 (1996).
Google Scholar
Oliveira-Cunha, P. et al. Effects of incubation conditions on nutrient mineralisation rates in fish and shrimp. Freshw. Biol. 63(9), 1107–1117 (2018).
Google Scholar
Pilati, A. & Vanni, M. J. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116, 1663–1674 (2007).
Google Scholar
Moody, E. K., Corman, J. R., Elser, J. J. & Sabo, J. L. Diet composition affects the rate and N: P ratio of fish excretion. Fresh. Biol. 60, 456–465 (2015).
Google Scholar
Chew, S. F. & Ip, Y. K. Excretory nitrogen metabolism and defense against ammonia toxicity in air-breathing fishes. J. Fish Biol. 84, 603–638 (2014).
Google Scholar
Helder, C. Subsídios para Gestão dos Recursos Hídricos das bacias hidrográficas dos rios Macacu, São João, Macaé e Macabu (Secretaria do Meio Ambiente, 1999).
Mazzoni, R., Moraes, M., Rezende, C. F. & Miranda, J. C. Alimentação e padrões ecomorfológicos das espécies de peixes de riacho do alto rio Tocantins, Goiás, Brasil. Iheringia. Série Zool. 100, 2 (2010).
Menezes, N. A., Weitzman, S. H.,Weitzman, M. J., Oyakawa, O. T., Lima, F. C. T. & Castro, R. M. C. Peixes de água doce da Mata Atlantica. Museu de Zoologia, Universidade de São Paulo, 1ª edição. ISBN: 9788587735034 (2007).
Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. Peixes de Riachos da Mata Atlântica. Editora Neotropica, 1ª edição. ISBN: 859904902x (2006).
Fogaça, F. N. O., Aranha, J. M. R. & Esper, M. D. L. P. Ictiofauna do rio do Quebra (Antonina, PR, Brasil): ocupação espacial e hábito alimentar. Interciencia 28(3), 168–173 (2003).
Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56(10), 1801–1808. https://doi.org/10.1139/f99-128 (1999).
Google Scholar
Taylor, B. W. et al. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J. North Am. Benthol. Soc. 26, 167–177 (2007).
Google Scholar
Gotherman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwater (Blackwell, 1978).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
Google Scholar
Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).
Google Scholar
Faraday, J. J. Linear Models with R (CRC Press, 2009).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.
Source: Ecology - nature.com