in

Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community

  • Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).

    Google Scholar 

  • Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Atkinson, C. L., Capps, K. A., Rugenski, A. T. & Vanni, M. J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rev. 92, 2003–2023 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).

    Article 

    Google Scholar 

  • Vanni, M. J., Boros, G. & McIntyre, P. B. When are fish sources vs. sinks of nutrients in lake ecosystems?. Ecology 94(10), 2195–206 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Lovell, T. Nutrition and Feeding of Fish Vol. 260 (Van Nostrand Reinhold, 1989).

    Book 

    Google Scholar 

  • Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: The potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article 

    Google Scholar 

  • Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Nat. Acad. Sci. USA 112(8), 2617–2622 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alves, J. M. et al. Stoichiometry of benthic invertebrate nutrient recycling: Interspecific variation and the role of body mass. Aquat. Ecol. 44, 421–430 (2010).

    CAS 
    Article 

    Google Scholar 

  • Hall, R. O. J., Koch, B. J., Marshall, M. C., Taylor, B. W. & Tronstad, L. M. In How Body Size Mediates the Role of Animals in Nutrient Cycling in Aquatic Ecosystems (eds Hildrew, A. G. et al.) 286–305 (Cambridge University Press, 2007).

    Google Scholar 

  • Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc. Nat. Acad. Sci. USA 112, 2640–2647 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: A global synthesis. Ecology 97, 3460–3471 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Burel, C. et al. Effects of temperature on growth and metabolism in juvenile turbot. J. Fish Biol. 49, 678–692 (1996).

    Article 

    Google Scholar 

  • Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12(5), 369–384 (2009).

    PubMed 
    Article 

    Google Scholar 

  • McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Nat. Acad. Sci. USA 104, 4461–4466 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barneche, D. R. & Allen, A. P. Embracing general theory and taxon-level idiosyncrasies to explain nutrient recycling. Proc. Nat. Acad. Sci. USA 112, 6248–6249 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Glaholt, S. P. Jr. & Vanni, M. J. Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshw. Biol. 50, 1864–1881 (2005).

    CAS 
    Article 

    Google Scholar 

  • McIntyre, P. B. & Flecker, A. S. Ecological Stoichiometry as an integrative framework in stream fish ecology. Am. Fish. Soc. Symp. 73, 539–558 (2010).

    Google Scholar 

  • Pough, F. H., Janis, C. M. & Heiser, J. B. Vertebrate Life (Prentice-Hall, 2005).

    Google Scholar 

  • Griffiths, D. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshw. Fish 15, 86–95 (2006).

    Article 

    Google Scholar 

  • McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?. Ecology 89(8), 2335–2346 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Cross, W. F., Benstead, J. P., Rosemond, A. D. & Wallace, J. B. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett. 6, 721–732 (2003).

    Article 

    Google Scholar 

  • Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78(6), 1816–1831 (1997).

    Article 

    Google Scholar 

  • Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293 (2002).

    Article 

    Google Scholar 

  • Fritschie, K. J. & Olden, J. D. Disentangling the influences of mean body size and size structure on ecosystem functioning: an example of nutrient recycling by a non-native crayfish. Ecol. Evol. 6, 159–169 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • White, C. R. & Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Natl Acad. Sci. USA 100, 4046–4049 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capellini, I., Venditti, C. & Barton, R. A. Phylogeny and metabolic scaling in mammals. Ecology 91, 2783–2793 (2010).

    PubMed 
    Article 

    Google Scholar 

  • DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 107, 12941–12945 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tátrai, I. Influence of temperature, rate of feeding and body weight on nitrogen metabolism of bream Abramis brama L. Comp. Biochem. Physiol. 83A, 543–547 (1986).

    Article 

    Google Scholar 

  • Tsui, T. K. N. et al. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J. Exp. Biol. 205, 651–659 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zakés, Z., Szczepkowski, M., Demska-Zakés, K. & Jesiolowski, M. Oxygen consumption and ammonia excretion by juvenile pike, Esox lucius L. Arch. Pol. Fish. 15, 79–92 (2007).

    Google Scholar 

  • Liu, F., Yang, S. & Chen, H. Effect of temperature, stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis x M. chrysops). Aquac. Res. 40, 450–455 (2009).

    CAS 
    Article 

    Google Scholar 

  • Currie, S. et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 88, 43–58 (2010).

    CAS 
    Article 

    Google Scholar 

  • Dockray, J. J., Reid, S. D. & Wood, C. M. Effects of elevated summer temperatures and reduced pH on metabolism and growth of juvenile rainbow trout (Oncorhynchus mykiss) on unlimited ration. Can. J. Fish. Aquat. Sci. 53, 2752–2763 (1996).

    Article 

    Google Scholar 

  • Oliveira-Cunha, P. et al. Effects of incubation conditions on nutrient mineralisation rates in fish and shrimp. Freshw. Biol. 63(9), 1107–1117 (2018).

    CAS 
    Article 

    Google Scholar 

  • Pilati, A. & Vanni, M. J. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116, 1663–1674 (2007).

    Article 

    Google Scholar 

  • Moody, E. K., Corman, J. R., Elser, J. J. & Sabo, J. L. Diet composition affects the rate and N: P ratio of fish excretion. Fresh. Biol. 60, 456–465 (2015).

    CAS 
    Article 

    Google Scholar 

  • Chew, S. F. & Ip, Y. K. Excretory nitrogen metabolism and defense against ammonia toxicity in air-breathing fishes. J. Fish Biol. 84, 603–638 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Helder, C. Subsídios para Gestão dos Recursos Hídricos das bacias hidrográficas dos rios Macacu, São João, Macaé e Macabu (Secretaria do Meio Ambiente, 1999).

    Google Scholar 

  • Mazzoni, R., Moraes, M., Rezende, C. F. & Miranda, J. C. Alimentação e padrões ecomorfológicos das espécies de peixes de riacho do alto rio Tocantins, Goiás, Brasil. Iheringia. Série Zool. 100, 2 (2010).

    Google Scholar 

  • Menezes, N. A., Weitzman, S. H.,Weitzman, M. J., Oyakawa, O. T., Lima, F. C. T. & Castro, R. M. C. Peixes de água doce da Mata Atlantica. Museu de Zoologia, Universidade de São Paulo, 1ª edição. ISBN: 9788587735034 (2007).

  • Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. Peixes de Riachos da Mata Atlântica. Editora Neotropica, 1ª edição. ISBN: 859904902x (2006).

  • Fogaça, F. N. O., Aranha, J. M. R. & Esper, M. D. L. P. Ictiofauna do rio do Quebra (Antonina, PR, Brasil): ocupação espacial e hábito alimentar. Interciencia 28(3), 168–173 (2003).

    Google Scholar 

  • Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56(10), 1801–1808. https://doi.org/10.1139/f99-128 (1999).

    CAS 
    Article 

    Google Scholar 

  • Taylor, B. W. et al. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J. North Am. Benthol. Soc. 26, 167–177 (2007).

    Article 

    Google Scholar 

  • Gotherman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwater (Blackwell, 1978).

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).

    Article 

    Google Scholar 

  • Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • Faraday, J. J. Linear Models with R (CRC Press, 2009).

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.


  • Source: Ecology - nature.com

    A simple way to significantly increase lifetimes of fuel cells and other devices

    High energy and hungry for the hardest problems