Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78, 103–116 (2001).
Google Scholar
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
Google Scholar
Wu, T. et al. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 46, 18–29 (2017).
Google Scholar
Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).
Google Scholar
Morens, D. M., Folkers, G. K. & Fauci, A. S. Emerging infections: A perpetual challenge. Lancet Infect. Dis. 8, 710–719 (2008).
Google Scholar
Cunningham, A. A. A walk on the wild side—emerging wildlife diseases. BMJ 331, 1214–1215 (2005).
Google Scholar
Lloyd-Smith, J. O. et al. Epidemic dynamics at the interface, humal.-animal. Science 326, 1362–1368 (2009).
Google Scholar
Wu, Z. et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6, 1–14 (2018).
Google Scholar
Sczyrba, A. et al. Critical assessment of metagenome interpretation: A benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).
Google Scholar
Álvarez-Romero, J. G., Pressey, R. L., Ban, N. C., Torre-Cosío, J. & Aburto-Oropeza, O. Marine conservation planning in practice: Lessons learned from the gulf of California. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 483–505 (2013).
Google Scholar
Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).
Google Scholar
Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).
Google Scholar
Deepak, D. et al. Pinniped zoonoses: A review. Int. J. Livest. Res. 9, 1 (2019).
Google Scholar
Hermosilla, C. et al. Gastrointestinal parasites and bacteria in free-living South American sea lions (Otaria flavescens) in Chilean Comau Fjord and new host record of a Diphyllobothrium scoticum-like cestode. Front. Mar. Sci. 5, 1–13 (2018).
Google Scholar
Oxley, A. P. A., Powell, M. & McKay, D. B. Species of the family Helicobacteraceae detected in an Australian sea lion (Neophoca cinerea) with chronic gastritis. J. Clin. Microbiol. 42, 3505–3512 (2004).
Google Scholar
Waltzek, T. B., Cortés-Hinojosa, G., Wellehan, J. F. X. & Gray, G. C. Marine mammal zoonoses: A review of disease manifestations. Zoonoses Public Health 59, 521–535 (2012).
Google Scholar
Dans, S. L., Crespo, E. A. & Coscarella, M. A. Wildlife tourism: Underwater behavioral responses of South American sea lions to swimmers. Appl. Anim. Behav. Sci. 188, 91–96 (2017).
Google Scholar
Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).
Google Scholar
Fuks, G. et al. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbime 6, 1–13 (2018).
Google Scholar
Barb, J. J. et al. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS ONE 11, e0148047 (2016).
Google Scholar
Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: A high throughput sequencing approach. Helgol. Mar. Res. 71, 1–10 (2017).
Google Scholar
Brooks, J. P. et al. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies Ecological and evolutionary microbiology. BMC Microbiol. 15, 1–14 (2015).
Google Scholar
Ramirez-delgado, D. et al. Multi-locus evaluation of gastrointestinal bacterial communities from Zalophus californianus pups in the Gulf of California, México. PeerJ https://doi.org/10.7717/peerj.13235 (2022).
Google Scholar
Chakravorty, S., Helb, D., Burday, M. & Connell, N. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).
Google Scholar
Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Google Scholar
Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick. Borne. Dis. 8, 453–461 (2017).
Google Scholar
Gold, Z. et al. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol. Ecol. Resour. 21, 2546–2564 (2021).
Google Scholar
Alnajar, S. & Gupta, R. S. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol. 54, 108–127 (2017).
Google Scholar
Jiang, L. et al. Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory. J. Microbiol. 58, 357–366 (2020).
Google Scholar
Janda, J. M. & Abbott, S. L. The changing face of the family enterobacteriaceae (Order: Enterobacterales): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 34, 1–45 (2021).
Google Scholar
Shi, R. et al. Pathogenicity of Shigella in chickens. PLoS ONE 9, 1–7 (2014).
Roy, B., Tousif Ahamed, S. K., Bandyopadhyay, B. & Giri, N. Development of quinolone resistance and prevalence of different virulence genes among Shigella flexneri and Shigella dysenteriae in environmental water samples. Lett. Appl. Microbiol. 71, 86–93 (2020).
Google Scholar
Clarkson, K. A. et al. Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine 66, 103308 (2021).
Google Scholar
Khalil, I. A. et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).
Google Scholar
Zhang, L. et al. Detection of Shigella in milk and clinical samples by magnetic immunocaptured-loop-mediated isothermal amplification assay. Front. Microbiol. 9, 1–7 (2018).
Google Scholar
Maurelli, A. T. et al. Shigella infection as observed in the experimentally inoculated domestic pig, Sus scrofa domestica. Microb. Pathog. 25, 189–196 (1998).
Google Scholar
Mukarati, N. L. et al. A serological survey of Bacillus anthracis reveals widespread exposure to the pathogen in free-range and captive lions in Zimbabwe. Transbound. Emerg. Dis. 68, 1676–1684 (2021).
Google Scholar
Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).
Google Scholar
Norris, M. H. et al. Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains. PLoS ONE 15, 1–11 (2020).
Google Scholar
Conesa, A., Garofolo, G., Di Pasquale, A. & Cammà, C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011–2021): Microbiological and WGS data risk assessment. EFSA J. 20, 1–12 (2022).
Google Scholar
Buettner, S., Wieland, B., Staerk, K. D. C. & Regula, G. Risk attribution of Campylobacter infection by age group using exposure modelling. Epidemiol. Infect. 138, 1748–1761 (2010).
Google Scholar
Diaz-Sanchez, S., Hanning, I., Pendleton, S. & D’Souza, D. Next-generation sequencing: The future of molecular genetics in poultry production and food safety. Poult. Sci. 92, 562–572 (2013).
Google Scholar
Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23 (2001).
Google Scholar
Yekani, M. et al. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb. Pathog. 149, 104506 (2020).
Google Scholar
Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).
Google Scholar
Wareham, D. W., Wilks, M., Ahmed, D., Brazier, J. S. & Millar, M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 40, 67–68 (2005).
Google Scholar
Yoshino, Y. et al. Clinical features of Bacteroides bacteremia and their association with colorectal carcinoma. Infection 40, 63–67 (2012).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
Google Scholar
Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).
Google Scholar
Committee on Biological Agents (ABAS). TRBA 466 Classification of Prokaryotes (Bacteria and Archaea) into Risk Groups (2010).
Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, 36–42 (2013).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 1–7 (2015).
Google Scholar
Source: Ecology - nature.com