in

Global patterns of vascular plant alpha diversity

  • Linder, H. P. Plant diversity and endemism in sub‐Saharan tropical Africa. J. Biogeogr. 28, 169–182 (2001).

    Article 

    Google Scholar 

  • Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).

    Article 

    Google Scholar 

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Nat. Acad. Sci. 104, 5925–5930 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brummitt, N., Araújo, A. C. & Harris, T. Areas of plant diversity—What do we know? Plants, People, Planet 3, 33–44 (2020).

    Article 

    Google Scholar 

  • Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75, 1–34 (1988).

    Article 

    Google Scholar 

  • Slik, J. F. et al. An estimate of the number of tropical tree species. Proc. Natl Acad. Sci. 112, 7472–7477 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Parmentier, I. et al. The odd man out? Might climate explain the lower tree α‐diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).

    Article 

    Google Scholar 

  • Weigand, A. et al. Global fern and lycophyte richness explained: How regional and local factors shape plot richness. J. Biogeogr. 47, 59–71 (2020).

    Article 

    Google Scholar 

  • Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Lenoir, J. et al. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges. PLoS ONE 5, e15734 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).

    Article 

    Google Scholar 

  • Bruelheide, H., Jiménez-Alfaro, B., Jandt, U. & Sabatini, F. M. Deriving site-specific species pools from large databases. Ecography 43, 1215–1228 (2020).

    Article 

    Google Scholar 

  • Dengler, J. et al. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. J. Biogeogr. 47, 72–86 (2020).

    Article 

    Google Scholar 

  • Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, And Conservation (Oxford University Press, 2007).

  • Bruelheide, H. et al. sPlot —a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Article 

    Google Scholar 

  • Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021).

    Article 

    Google Scholar 

  • Ricklefs, R. E. Community diversity—relative roles of local and regional processes. Science 235, 167–171 (1987).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Crawley, M. J. & Harral, J. E. Scale dependence in plant biodiversity. Science 291, 864–868 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jiménez-Alfaro, B. et al. History and environment shape species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2, 483–490 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S. & Blasi, C. Drivers of herb-layer species diversity in two unmanaged temperate forests in northern Spain. Community Ecol. 15, 147–157 (2014).

    Article 

    Google Scholar 

  • Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Pärtel, M., Bennett, J. A. & Zobel, M. Macroecology of biodiversity: disentangling local and regional effects. N. Phytol. 211, 404–410 (2016).

    Article 

    Google Scholar 

  • Field, R. et al. Spatial species‐richness gradients across scales: a meta‐analysis. J. Biogeogr. 36, 132–147 (2009).

    Article 

    Google Scholar 

  • Biurrun, I. et al. Benchmarking plant diversity of Palaearctic grasslands and other open habitats. J. Veg. Sci. 32, e13050 (2021).

    Article 

    Google Scholar 

  • Da, S. S. et al. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 56, 641–652 (2018).

    Article 

    Google Scholar 

  • Gerstner, K., Dormann, C. F., Václavík, T., Kreft, H. & Seppelt, R. Accounting for geographical variation in species–area relationships improves the prediction of plant species richness at the global scale. J. Biogeogr. 41, 261–273 (2014).

    Article 

    Google Scholar 

  • Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Muñoz Mazón, M. et al. Mechanisms of community assembly explaining beta-diversity patterns across biogeographic regions. J. Veg. Sci. 32, e13032 (2021).

    Article 

    Google Scholar 

  • Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).

    Article 

    Google Scholar 

  • Večeřa, M. et al. Alpha diversity of vascular plants in European forests. J. Biogeogr. 46, 1919–1935 (2019).

    Article 

    Google Scholar 

  • Wüest, R. O. et al. Macroecology in the age of Big Data—Where to go from here? J. Biogeogr. 47, 1–12 (2019).

    Article 

    Google Scholar 

  • Valavi, R., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019).

    Article 

    Google Scholar 

  • Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 11, 4540 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Belitz, K. & Stackelberg, P. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 139, 105006 (2021).

    Article 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92, 61–83 (2005).

    Google Scholar 

  • Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Glob. Ecol. Biogeogr. 30, 1218–1231 (2021).

    Article 

    Google Scholar 

  • Wilson, J. B., Peet, R. K., Dengler, J. & Pärtel, M. Plant species richness: the world records. J. Veg. Sci. 23, 796–802 (2012).

    Article 

    Google Scholar 

  • Chytrý, M. et al. The most species-rich plant communities in the Czech Republic and Slovakia (with new world records). Preslia 87, 217–278 (2015).

    Google Scholar 

  • Whitmore, T. C., Peralta, R. & Brown, K. Total species count in a Costa Rican tropical rain forest. J. Trop. Ecol. 1, 375–378 (1985).

    Article 

    Google Scholar 

  • Chytrý, M. et al. High species richness in hemiboreal forests of the northern Russian Altai, southern Siberia. J. Veg. Sci. 23, 605–616 (2012).

    Article 

    Google Scholar 

  • Duivenvoorden, J. Vascular plant species counts in the rain forests of the middle Caquetá area, Colombian Amazonia. Biodivers. Conserv. 3, 685–715 (1994).

    Article 

    Google Scholar 

  • Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. in Forest Biodiversity in North, Central and South America and the Carribean: Research and Monitoring. Man and the Biosphere Series (eds. Dallmeier, F. & Comiskey, J. A.) (Unesco and The Parthenon Publishing Group, 1998).

  • Mendieta‐Leiva, G. et al. EpIG‐DB: a database of vascular epiphyte assemblages in the Neotropics. J. Veg. Sci. 31, 518–528 (2020).

    Article 

    Google Scholar 

  • Spicer, M. E., Mellor, H. & Carson, W. P. Seeing beyond the trees: a comparison of tropical and temperate plant growth forms and their vertical distribution. Ecology 101, e02974 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Royo, A. A. & Carson, W. P. The herb community of a tropical forest in central Panama: dynamics and impact of mammalian herbivores. Oecologia 145, 66–75 (2005).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Sosef, M. S. M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dwomoh, F. K. & Wimberly, M. C. Fire regimes and forest resilience: alternative vegetation states in the West African tropics. Landsc. Ecol. 32, 1849–1865 (2017).

    Article 

    Google Scholar 

  • Condit, R. et al. Beta-diversity in tropical forest trees. Science 295, 666–669 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cao, K. et al. Species packing and the latitudinal gradient in beta-diversity. Proc. R. Soc. B 288, 20203045 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 3137 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Graco-Roza, C. et al. Distance decay 2.0—a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr. 31, 1399–1421 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Naturalist 133, 240–256 (1989).

    Article 

    Google Scholar 

  • Andermann, T., Antonelli, A., Barrett, R. L. & Silvestro, D. Estimating alpha, beta, and gamma diversity through deep learning. Front Plant Sci. 13, 839407 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cardoso, D. et al. Amazon plant diversity revealed by a taxonomically verified species list. Proc. Nat. Acad. Sci. 114, 10695–10700 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cayuela, L. et al. Species distribution modeling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2, 319–352 (2009).

    Article 

    Google Scholar 

  • Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).

    ADS 
    Article 

    Google Scholar 

  • Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the Anthropocene. PLoS ONE 7, e30535 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    ADS 
    Article 

    Google Scholar 

  • Dengler, J. et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J. Veg. Sci. 22, 582–597 (2011).

    Article 

    Google Scholar 

  • Lopez‐Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).

    Article 

    Google Scholar 

  • Chytrý, M. Database of Masaryk University Vegetation Research in Siberia. Biodiver. Ecol. 4, 290 (2012).

    Article 

    Google Scholar 

  • Schmidt, M. et al. The West African Vegetation Database. Biodiv. Ecol. 4, 105–110 (2012).

    Article 

    Google Scholar 

  • Muche, G., Schmiedel, U. & Jürgens, N. BIOTA Southern Africa Biodiversity Observatories Vegetation Database. Biodiver. Ecol. 4, 111–123 (2012).

    Article 

    Google Scholar 

  • Revermann, R. et al. Vegetation database of the Okavango Basin. Phytocoenologia 46, 103–104 (2016).

    Article 

    Google Scholar 

  • N’Guessan, A. E. et al. Drivers of biomass recovery in a secondary forested landscape of West Africa. Ecol. Manag. 433, 325–331 (2019).

    Article 

    Google Scholar 

  • Müller, J. Zur Vegetationsökologie der Savannenlandschaften im Sahel Burkina Fasos (Frankfurt-Main Universität, 2003).

  • Kearsley, E. et al. Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun. 4, 2269 (2013).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Djomo Nana, E. et al. Relationship between Survival Rate of Avian Artificial Nests and Forest Vegetation Structure along a Tropical Altitudinal Gradient on Mount Cameroon. Biotropica 47, 758–764 (2015).

    Article 

    Google Scholar 

  • Wana, D. & Beierkuhnlein, C. Responses of plant functional types to environmental gradients in the south‐west Ethiopian highlands. J. Trop. Ecol. 27, 289–304 (2011).

    Article 

    Google Scholar 

  • Finckh, M. Vegetation Database of Southern Morocco. Biodiver. Ecol. 4, 297 (2012).

    Article 

    Google Scholar 

  • Strohbach, B. & Kangombe, F. National Phytosociological Database of Namibia. Biodiver. Ecol. 4, 298–298 (2012).

    Article 

    Google Scholar 

  • Samimi, C. Das Weidepotential im Gutu‐Distrikt (Zimbabwe)—Möglichkeiten und Grenzen der Modellierung unter Verwendung von Landsat TM‐5. Vol. 19 (2003).

  • Černý, T. et al. Classification of Korean forests: patterns along geographic and environmental gradients. Appl. Veg. Sci. 18, 5–22 (2015).

    Article 

    Google Scholar 

  • Nowak, A. et al. Vegetation of Middle Asia: the project state of the art after ten years of survey and future perspectives. Phytocoenologia 47, 395–400 (2017).

    Article 

    Google Scholar 

  • Liu, H., Cui, H., Pott, R. & Speier, M. Vegetation of the woodland‐steppe ecotone in southeastern Inner Mongolia, China. J. Veg. Sci. 11, 525–532 (2000).

    Article 

    Google Scholar 

  • Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).

    Article 

    Google Scholar 

  • Bruelheide, H. et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecol. Monogr. 81, 25–41 (2011).

    Article 

    Google Scholar 

  • Cheng, X.-L. et al. Taxonomic and phylogenetic diversity of vascular plants at Ma’anling volcano urban park in tropical Haikou, China: Reponses to soil properties. PLoS ONE 13, e0198517 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hatim, M. Vegetation Database of Sinai in Egypt. Biodiver. Ecol. 4, 303 (2012).

    Article 

    Google Scholar 

  • Drescher, J. et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150275 (2016).

    Article 

    Google Scholar 

  • Dolezal, J., Dvorsky, M. & Kopecky, M. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Borchardt, P. & Schickhoff, U. Vegetation Database of South‐Western Kyrgyzstan—the walnut‐wildfruit forests and alpine pastures. Biodiver. Ecol. 4, 309 (2012).

    Article 

    Google Scholar 

  • Wagner, V. Eurosiberian meadows at their southern edge: patterns and phytogeography in the NW Tien Shan. J. Veg. Sci. 20, 199–208 (2009).

    Article 

    Google Scholar 

  • von Wehrden, H., Wesche, K. & Miehe, G. Plant communities of the southern Mongolian Gobi. Phytocoenologia 39, 331–376 (2009).

    Article 

    Google Scholar 

  • Chepinoga, V. V. Wetland Vegetation Database of Baikal Siberia (WETBS). Biodiver. Ecol. 4, 311 (2012).

    Article 

    Google Scholar 

  • Korolyuk, A. et al. Database of Siberian Vegetation (DSV). Biodiver. Ecol. 4, 312–312 (2012).

    Article 

    Google Scholar 

  • El-Sheikh, M. A. et al. SaudiVeg ecoinformatics: aims, current status and perspectives. Saudi J. Biol. Sci. 24, 389–398 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Vanselow, K. A. Eastern Pamirs—a vegetation‐plot database for the high mountain pastures of the Pamir Plateau (Tajikistan). Phytocoenologia 46, 105 (2016).

    Article 

    Google Scholar 

  • De Sanctis, M. & Attorre, F. Socotra Vegetation Database. Biodiver. Ecol. 4, 315 (2012).

    Article 

    Google Scholar 

  • Chabbi, A. & Loescher, H. W. Terrestrial Ecosystem Research Infrastructures: Challenges and Opportunities (CRC Press, 2017).

  • Ibanez, T. et al. Structural and floristic diversity of mixed rainforest in New Caledonia: New data from the New Caledonian Plant Inventory and Permanent Plot Network (NC‐PIPPN). Appl. Veg. Sci. 17, 386–397 (2014).

  • Wiser, S. K., Bellingham, P. J. & Burrows, L. E. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).

    Google Scholar 

  • Whitfeld, T. J. S. et al. Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica 46, 538–548 (2014).

    Article 

    Google Scholar 

  • Dengler, J. & Rūsiņa, S. Database dry grasslands in the Nordic and Baltic Region. Biodiver. Ecol. 4, 319–320 (2012).

    Article 

    Google Scholar 

  • Biurrun, I., García-Mijangos, I., Campos, J. A., Herrera, M. & Loidi, J. Vegetation-plot database of the University of the Basque Country (BIOVEG). Biodiver. Ecol. 4, 328 (2012).

    Article 

    Google Scholar 

  • Vassilev, K., Stevanović, Z. D., Cušterevska, R., Bergmeier, E. & Apostolova, I. Balkan Dry Grasslands Database. Biodiver. Ecol. 4, 330–330 (2012).

    Article 

    Google Scholar 

  • Marcenò, C. & Jiménez‐Alfaro, B. The Mediterranean Ammophiletea Database: a comprehensive dataset of coastal dune vegetation. Phytocoenologia 47, 95–105 (2017).

    Google Scholar 

  • Vassilev, K. et al. Balkan Vegetation Database: historical background, current status and future perspectives. Phytocoenologia 46, 89–95 (2016).

    Article 

    Google Scholar 

  • Landucci, F. et al. WetVegEurope: a database of aquatic and wetland vegetation of Europe. Phytocoenologia 45, 187–194 (2015).

    Article 

    Google Scholar 

  • Peterka, T., Jiroušek, M., Hájek, M. & Jiménez‐Alfaro, B. European Mire Vegetation Database: a gap‐oriented database for European fens and bogs. Phytocoenologia 45, 291–297 (2015).

    Article 

    Google Scholar 

  • De Sanctis, M., Fanelli, G., Mullaj, A. & Attorre, F. Vegetation database of Albania. Phytocoenologia 47, 107–108 (2017).

    Article 

    Google Scholar 

  • Willner, W., Berg, C. & Heiselmayer, P. Austrian Vegetation Database. Biodiver. Ecol. 4, 333 (2012).

    Article 

    Google Scholar 

  • Apostolova, I., Sopotlieva, D., Pedashenko, H., Velev, N. & Vasilev, K. Bulgarian Vegetation Database: historic background, current status and future prospects. Biodiver. Ecol. 4, 141–148 (2012).

    Article 

    Google Scholar 

  • Wohlgemuth, T. Swiss Forest Vegetation Database. Biodiver. Ecol. 4, 340 (2012).

    Article 

    Google Scholar 

  • Chytrý, M. & Rafajová, M. Czech National Phytosociological Database: basic statistics of the available vegetation‐plot data. Preslia 75, 1–15 (2003).

    Google Scholar 

  • Jansen, F., Dengler, J. & Berg, C. VegMV—the vegetation database of Mecklenburg‐Vorpommern. Biodiver. Ecol. 4, 149–160 (2012).

    Article 

    Google Scholar 

  • Ewald, J., May, R. & Kleikamp, M. VegetWeb—the national online‐repository of vegetation plots from Germany. Biodiver. Ecol. 4, 173–175 (2012).

    Article 

    Google Scholar 

  • Jandt, U. & Bruelheide, H. German vegetation reference database (GVRD). Biodiver. Ecol. 4, 355–355 (2012).

    Article 

    Google Scholar 

  • Garbolino, E., De Ruffray, P., Brisse, H. & Grandjouan, G. The phytosociological database SOPHY as the basis of plant socio-ecology and phytoclimatology in France. Biodiver. Ecol. 4, 177–184 (2012).

    Article 

    Google Scholar 

  • Dimopoulos, P. & Tsiripidis, I. Hellenic Natura 2000 Vegetation Database (HelNAtVeg). Biodiver. Ecol. 4, 388 (2012).

    Article 

    Google Scholar 

  • Fotiadis, G., Tsiripidis, I., Bergmeier, E. & Dimopoulos, P. Hellenic Woodland Database. Biodiver. Ecol. 4, 389 (2012).

    Article 

    Google Scholar 

  • Stančić, Z. Phytosociological Database of Non‐Forest Vegetation in Croatia. Biodiver. Ecol. 4, 391 (2012).

    Article 

    Google Scholar 

  • Lájer, K. et al. Hungarian Phytosociological database (COENODATREF): sampling methodology, nomenclature and its actual stage. Ann. Botanica Nuova Ser. 7, 197–201 (2008).

    Google Scholar 

  • Landucci, F. et al. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 146, 756–763 (2012).

    Article 

    Google Scholar 

  • Casella, L., Bianco, P. M., Angelini, P. & Morroni, E. Italian National Vegetation Database (BVN/ISPRA). Biodiver. Ecol. 4, 404 (2012).

    Article 

    Google Scholar 

  • Agrillo, E. et al. Nationwide Vegetation Plot Database—Sapienza University of Rome: state of the art, basic figures and future perspectives. Phytocoenologia 47, 221–229 (2017).

    Article 

    Google Scholar 

  • Rūsiņa, S. Semi‐natural Grassland Vegetation Database of Latvia. Biodiver. Ecol. 4, 409 (2012).

    Article 

    Google Scholar 

  • Schaminée, J. H. J. et al. Schatten voor de natuur. Achtergronden, inventaris en toepassingen van de Landelijke Vegetatie Databank (KNNV Uitgeverij, 2006).

  • Kącki, Z. & Śliwiński, M. The Polish Vegetation Database: structure, resources and development. Acta Soc. Bot. Pol. 81, 75–79 (2012).

    Article 

    Google Scholar 

  • Indreica, A., Turtureanu, P. D., Szabó, A. & Irimia, I. Romanian Forest Database: a phytosociological archive of woody vegetation. Phytocoenologia 47, 389–393 (2017).

    Article 

    Google Scholar 

  • Vassilev, K. et al. The Romanian Grassland Database (RGD): historical background, current status and future perspectives. Phytocoenologia 48, 91–100 (2018).

    Article 

    Google Scholar 

  • Aćić, S., Petrović, M., Dajić Stevanović, Z. & Šilc, U. Vegetation database Grassland vegetation in Serbia. Biodiver. Ecol. 4, 418 (2012).

    Article 

    Google Scholar 

  • Golub, V. et al. Lower Volga Valley Phytosociological Database. Biodiver. Ecol. 4, 419 (2012).

    Article 

    Google Scholar 

  • Lysenko, T., Kalmykova, O. & Mitroshenkova, A. Vegetation Database of the Volga and the Ural Rivers Basins. Biodiver. Ecol. 4, 420–421 (2012).

    Article 

    Google Scholar 

  • Prokhorov, V., Rogova, T. & Kozhevnikova, M. Vegetation database of Tatarstan. Phytocoenologia 47, 309–313 (2017).

    Article 

    Google Scholar 

  • Šilc, U. Vegetation Database of Slovenia. Biodiver. Ecol. 4, 428 (2012).

    Article 

    Google Scholar 

  • Šibík, J. Slovak Vegetation Database. Biodiver. Ecol. 4, 429 (2012).

    Article 

    Google Scholar 

  • Kuzemko, A. Ukrainian Grasslands Database. Biodiver. Ecol. 4, 430 (2012).

    Article 

    Google Scholar 

  • Cayuela, L. et al. The Tree Biodiversity Network (BIOTREE-NET): prospects for biodiversity research and conservation in the Neotropics. Biodiver. Ecol. 4, 211–224 (2012).

    Article 

    Google Scholar 

  • Wagner, V., Spribille, T., Abrahamczyk, S. & Bergmeier, E. Timberline meadows along a 1000 km transect in NW North America: species diversity and community patterns. Appl. Veg. Sci. 17, 129–141 (2014).

    Article 

    Google Scholar 

  • Aubin, I., Gachet, S., Messier, C. & Bouchard, A. How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience 14, 259–271 (2007).

    Article 

    Google Scholar 

  • Sieg, B., Drees, B. & Daniëls, F. J. A. Vegetation and altitudinal zonation in continental West Greenland. Medd. om. Gr.ønland Biosci. 57, 1–93 (2006).

    Google Scholar 

  • Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodiv. Ecol. 4, 233–241 (2012).

    Article 

    Google Scholar 

  • Peet, R. K. et al. Vegetation‐plot database of the Carolina Vegetation Survey. Biodiver. Ecol. 4, 243–253 (2012).

    Article 

    Google Scholar 

  • Walker, D. A. et al. The Alaska Arctic Vegetation Archive (AVA‐AK). Phytocoenologia 46, 221–229 (2016).

  • Peyre, G. et al. VegPáramo, a flora and vegetation database for the Andean páramo. Phytocoenologia 45, 195–201 (2015).

    Article 

    Google Scholar 

  • Vibrans, A. C., Sevgnani, L., Lingner, D. V., Gasper, A. L. & Sabbagh, S. The Floristic and Forest Inventory of Santa Catarina State (IFFSC): methodological and operational aspects. Pesqui. Florest. Brasileira 30, 291–302 (2010).

    Article 

    Google Scholar 

  • Pauchard, A., Fuentes, N., Jiménez, A., Bustamante, R. & Marticorena, A. In Plant Invasions in Protected Areas (eds Foxcroft, L., Pyšek, P., Richardson, D., Genovesi, P.) (Springer, 2013).

  • González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).

    Article 

    Google Scholar 

  • Bresciano, D., Altesor, A. & Rodríguez, C. The growth form of dominant grasses regulates the invasibility of Uruguayan grasslands. Ecosphere 5, 1–12 (2014).

  • Aiba, S.-i & Kitayama, K. Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol. 140, 139–157 (1999).

    Article 

    Google Scholar 

  • Armstrong, A. H., Shugart, H. H. & Fatoyinbo, T. E. Characterization of community composition and forest structure in a Madagascar lowland rainforest. Tropical Conserv. Sci. 4, 428–444 (2011).

    Article 

    Google Scholar 

  • Ayyappan, N. & Parthasarathy, N. Biodiversity inventory of trees in a large-scale permanent plot of tropical evergreen forest at Varagalaiar, Anamalais, Western Ghats, India. Biodivers. Conserv 8, 1533–1554 (1999).

    Article 

    Google Scholar 

  • Balslev, H., Valencia, R., Paz y Miño, G., Christensen, H. & Nielsen, I. In Forest biodiversity in North, Central and South America, and the Caribbean: research and monitoring (eds. Dallmeier, F. & Comiskey, J. A.) 585–594 (1998).

  • Bordenave, B. G., Granville, J.-J. D. & Hoff, M. Measurement of species richness of vascular plants in a neotropical rain forest in French Guiana. (1998).

  • Boyle, T. J. B. & Boontawee, B. CIFOR’s Research Programme on Conservation of Tropical Forest Genetic Resources, 395 (Center for International Forestry Research CIFOR, 1995).

  • Bunyavejchewin, S., Baker, P. J., LaFrankie, J. V. & Ashton, P. S. Stand structure of a seasonal dry evergreen forest at Huai Kha Khaeng Wildlife Sanctuary, western Thailand. Nat. Hist. Bull. Siam Soc. 49, 89–106 (2001).

    Google Scholar 

  • Cadotte, M. W., Franck, R., Reza, L. & Lovett-Doust, J. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodivers. Conserv. 11, 1417–1436 (2002).

    Article 

    Google Scholar 

  • Cano Ortiz, A. et al. Phytosociological study, diversity and conservation status of the cloud forest in the Dominican Republic. Plants (Basel, Switzerland) 9, 741 (2020).

  • Chisholm, R. A. et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 101, 1214–1224 (2013).

    Article 

    Google Scholar 

  • Chu, C. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).

    ADS 
    PubMed 

    Google Scholar 

  • Condit, R. S. et al. Tropical Tree a—Diversity: Results From a Worldwide Network of Large Plots (CABI, 2005).

  • D’Amico, C. & Gautier, L. Inventory of a 1-ha lowland rainforest plot in Manongarivo, (NW Madagascar). Candollea 55, 319–340 (2000).

    Google Scholar 

  • Davidar, P., Mohandass, D. & Vijayan, L. Floristic inventory of woody plants in a tropical montane (shola) forest in the Palni hills of the Western Ghats, India. Trop. Ecol. 12, 42–58 (2007).

    Google Scholar 

  • Davies, S. J. & Becker, P. Floristic composition and stand structure of mixed dipterocarp and heath forests in Brunei Darussalam. J. Trop. Sci. 8, 542–569 (1996).

    Google Scholar 

  • Duivenvoorden, J. F. Vascular plant species counts in the rain forests of the middle Caquet area. Colomb. Amazon. Biodivers. Conserv. 3, 685–715 (1994).

    Article 

    Google Scholar 

  • Ek, R. C. Botanical diversity in the tropical rain forest of Guyana: Botanische diversiteit in het tropisch regenwoud van Guyana. (Met een samenvatting in het Nederlands) (Universiteit Utrecht, 1997).

  • Galeano, G., Suárez, S. & Balslev, H. Vascular plant species count in a wet forest in the Chocó area on the Pacific coast of Colombia. Biodivers. Conserv. 7, 1563–1575 (1998).

    Article 

    Google Scholar 

  • Garrigues, J. P. Action anthropique sur la dynamique des formations végétales au sud de l’Inde (Ghâts occidentaux, Etat du Karnataka, District de Shimoga) (University of Claude Bernard, Lyon I, 1999).

  • Gastauer, M., Leyh, W. & Meira-Neto, J. A. A. Tree Diversity and Dynamics of the Forest of Seu Nico, Viçosa, Minas Gerais, Brazil. Biodiv. Data J. 3, e5425 (2015).

    Article 

    Google Scholar 

  • Helmi, N., Kartawinata, K. & Samsoedin, I. An undescribed lowland natural forest at Bodogol, Gunung Gede Pangrango National Park, Cibodas Biosphere Reserve, West Java, Indonesia. Reinwardtia 13, 33–44 (2009).

    Google Scholar 

  • Hernández, L., Dezzeo, N., Sanoja, E., Salazar, L. & Castellanos, H. Changes in structure and composition of evergreen forests on an altitudinal gradient in the Venezuelan Guayana Shield. Rev. de. Biol.ía Tropical 60, 11–33 (2012).

    Google Scholar 

  • Ho, B. C. et al. The plant diversity in Bukit Timah Nature Reserve, Singapore. Gardens’ Bull. Singap. 71, 41–144 (2019).

    Article 

    Google Scholar 

  • Hubbel, S. P. & Foster, R. B. In Tropical Rain Forest: Ecology and Management (eds Sutton, S. L., Whitmore, T. C. & Chadwick, S.) 25–41 (Blackwell Scientific Publications,1983).

  • Kartawinata, K., Samsoedin, I., Heriyanto, M. & Afriastini, J. J. A tree species inventory in a one-hectare plot at the Batang Gadis National Park, North Sumatra, Indonesia. Reinwardtia 12, 145 (2013).

    Article 

    Google Scholar 

  • Kiratiprayoon, S. Measuring and monitoring biodiversity in tropical and temperate forests. In: IUFRO Symposium, Chiang Mai (Thailand), 27 Aug2 (CIFOR, 1994).

  • KuoJung, C., WeiChun, C., KeiMei, C. & ChangFu, H. Vegetation dynamics of a lowland rainforest at the northern border of the paleotropics at Nanjenshan, southern Taiwan. Taiwan J. Sci. 25, 29–40 (2010).

    Google Scholar 

  • Lan, G., Zhu, H. & Cao, M. Tree species diversity of a 20-ha plot in a tropical seasonal rainforest in Xishuangbanna, southwest China. J. For. Res. 17, 432–439 (2012).

    CAS 
    Article 

    Google Scholar 

  • Lee, H. S. et al. Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. J. Trop. Sci. 14, 379–400 (2002).

    Google Scholar 

  • Linares-Palomino, R. et al. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecol. 201, 87–99 (2009).

    Article 

    Google Scholar 

  • Lubini, A. & Mandango, A. Etude phytosociologique et ecologique des forets a Uapaca guineensis dans le nord-est du district forestier central (Zaire). Bull. Jard. Bot. Natl Belg. 51, 231 (1981).

    Article 

    Google Scholar 

  • Makana, J.-R., Hart, T. & Hart, J. Forest structure and diversity of lianas and understory treelets in monodominant and mixed stands in the Ituri Forest, Democratic Republic of the Congo. Liana Article Index 20 (1998).

  • Mansur, M. & Kartawinata, K. Phytosociology of a lower montane forest on Mt. Batulanteh, Sumbawa, Indonesia. Reinwardtia 16, 77 (2017).

    Article 

    Google Scholar 

  • Mikoláš, M. et al. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc. R. Soc. B 288, 20211631 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mohandass, D. & Davidar, P. Floristic structure and diversity of a tropical montane evergreen forest (shola) of the Nilgiri Mountains, southern India. Trop. Ecol. 50, 219–229 (2009).

    Google Scholar 

  • Monge González, M. et al. BIOVERA-Tree: tree diversity, community composition, forest structure and functional traits along gradients of forest-use intensity and elevation in Veracruz, Mexico. Biodiv. Data J. 9, e69560 (2021).

  • Ngo, K. M., Davies, S., Nik, H., Faizu, N. & Lum, S. Resilience of a forest fragment exposed to long-term isolation in Singapore. Plant Ecol. Diver. 9, 397–407 (2016).

    Article 

    Google Scholar 

  • Parthasarathy, N. Tree diversity and distribution in undisturbed and human-impacted sites of tropical wet evergreen forest in southern Western Ghats, India. Biodivers. Conserv. 8, 1365–1381 (1999).

    Article 

    Google Scholar 

  • Parthasarathy, N. & Karthikeyan, R. Biodiversity and population density of woody species in a tropical evergreen forest in Courtallum reserve forest, Western Ghats, India. Trop. Ecol. 38 (1997).

  • Pascal, J. P. Wet Evergreen Forests of the Western Ghats of India (Institut français de Pondichéry, 1988).

  • Pascal, J. P. & Pelissier, R. Structure and floristic composition of a tropical evergreen forest in south-west India. J. Trop. Ecol. 12, 191–214 (1996).

    Article 

    Google Scholar 

  • Phillips, O. L. et al. Efficient plot-based floristic assessment of tropical forests. J. Trop. Ecol. 19, 629–645 (2003).

    Article 

    Google Scholar 

  • Proctor, J., Anderson, J. M., Chai, P. & Vallack, H. W. Ecological Studies in Four Contrasting Lowland Rain Forests in Gunung Mulu National Park, Sarawak: I. Forest Environment, Structure and Floristics. J. Ecol. 71, 237 (1983).

    Article 

    Google Scholar 

  • Ramesh, B. R. et al. Forest stand structure and composition in 96 sites along environmental gradients in the central Western Ghats of India. Ecology 91, 3118 (2010).

    Article 

    Google Scholar 

  • Razak, S. A. & Haron, N. W. Phytosociology of Aquilaria Malaccensis Lamk. and its communities from a tropical forest reserve in peninsular Malaysia. Pak. J. Bot. 47, 2143–2150 (2015).

    Google Scholar 

  • Romoleroux, K. et al. Especies leñosas (dap= 1 cm) encontradas en dos hectáreas de un bosque de la Amazonía ecuatoriana. Estudios sobre diversidad y ecología de plantas, 189–215 (1997).

  • Sarah, A. R., Nuradnilaila, H., Haron, N. W. & Azani, M. A Phytosociological Study on the Community of Palaquium gutta (Hook. f.) Baill.(Sapotaceae) at Ayer Hitam Forest Reserve, Selangor, Malaysia. Sains Malaysiana 44, 491–496 (2015).

    Article 

    Google Scholar 

  • Schrader, J., Moeljono, S., Tambing, J., Sattler, C. & Kreft, H. A new dataset on plant occurrences on small islands, including species abundances and functional traits across different spatial scales. Biodiv. Data J. 8, e55275 (2020).

    Article 

    Google Scholar 

  • Sheil, D., Kartawinata, K., Samsoedin, I., Priyadi, H. & Afriastini, J. J. The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. Plant Ecol. Diver. 3, 59–66 (2010).

    Article 

    Google Scholar 

  • Sukumar, R. et al. Long-term monitoring of vegetation in a tropical deciduous forest in Mudumalai, southern India. Curr. Sci. 62, 608–616 (1992).

    Google Scholar 

  • van Andel, T. R. Floristic composition and diversity of three swamp forests in northwest Guyana. Plant Ecol. 167, 293–317 (2003).

    Article 

    Google Scholar 

  • Webb, E. L. & Fa’aumu, S. Diversity and structure of tropical rain forest of Tutuila, American Samoa: effects of site age and substrate. Plant Ecol. 144, 257–274 (1999).

    Article 

    Google Scholar 

  • Zimmerman, J. K. et al. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto Rico: Implications for Tropical Tree Life Histories. J. Ecol. 82, 911 (1994).

    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schultz, J. The Ecozones of the World (Springer, 2005).

  • Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).

    Article 

    Google Scholar 

  • Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Package ‘dismo’. Available online at: http://cran.r-project.org/web/packages/dismo/index.html (2011).

  • Zhou, S. et al. Estimating stock depletion level from patterns of catch history. Fish. Fish. 18, 742–751 (2017).

    Article 

    Google Scholar 

  • Rocchini, D. et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geogr. 35, 211–226 (2011).

    Article 

    Google Scholar 

  • Potapov, P., Laestadius, L. & Minnemeyer, S. Global map of potential forest cover www.wri.org/forest-restoration-atlas (2011).

  • Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).

    Article 

    Google Scholar 

  • Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).

    Article 

    Google Scholar 

  • Pebesma, E. & Heuvelink, G. Spatio-temporal interpolation using gstat. RFID J. 8, 204–218 (2016).

    Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing v.3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).

  • South, A. rnaturalearth: World Map Data from Natural Earth v.0.1.0. R package https://CRAN.R-project.org/package=rnaturalearth (2017).

  • Sabatini, F. M. et al. Global patterns of vascular plant alpha-diversity [Dataset]. iDiv Data Repository. https://doi.org/10.25829/idiv.3506-p4c0mo (2022).

  • Sabatini, F. M. fmsabatini/GlobalLocal_PlantRichness: NatComms R3 v.3. Zenodo https://doi.org/10.5281/zenodo.6659837 (2022).


  • Source: Ecology - nature.com

    A simple way to significantly increase lifetimes of fuel cells and other devices

    High energy and hungry for the hardest problems