in

Asymmetrical dose responses shape the evolutionary trade-off between antifungal resistance and nutrient use

  • Fisher, M. C. et al. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. MBio 11, e00449–20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739–742 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nash, A. et al. MARDy: Mycology Antifungal Resistance Database. Bioinformatics 34, 3233–3234 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ksiezopolska, E. et al. Narrow mutational signatures drive acquisition of multidrug resistance in the fungal pathogen Candida glabrata. Curr. Biol. 4, 5314–5326.e10 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bryce Taylor, M. et al. yEvo: Experimental evolution in high school classrooms selects for novel mutations and epistatic interactions that impact clotrimazole resistance in S. cerevisiae. Preprint at bioRxiv https://doi.org/10.1101/2021.05.02.442375 (2021).

  • Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gerstein, A. C., Lo, D. S. & Otto, S. P. Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast. Genetics 192, 241–252 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, F. et al. The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 218, iyab056 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kanafani, Z. A. & Perfect, J. R. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin. Infect. Dis. 46, 120–128 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Iyer, K. R., Revie, N. M., Fu, C., Robbins, N. & Cowen, L. E. Treatment strategies for cryptococcal infection: challenges, advances and future outlook. Nat. Rev. Microbiol. 19, 454–466 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 330–338 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Erbs, P., Exinger, F. & Jund, R. Characterization of the Saccharomyces cerevisiae FCY1 gene encoding cytosine deaminase and its homologue FCA1 of Candida albicans. Curr. Genet. 31, 1–6 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wrenbeck, E. E., Azouz, L. R. & Whitehead, T. A. Single-mutation fitness landscapes for an enzyme on multiple substrates reveal specificity is globally encoded. Nat. Commun. 8, 15695 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, J. Z., Fowler, D. M. & Tokuriki, N. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. eLife 9, e56707 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, A., Acevedo-Rocha, C. G. & Reetz, M. T. Boosting the efficiency of site-saturation mutagenesis for a difficult-to-randomize gene by a two-step PCR strategy. Appl. Microbiol. Biotechnol. 102, 6095–6103 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Biot-Pelletier, D. & Martin, V. J. J. Seamless site-directed mutagenesis of the Saccharomyces cerevisiae genome using CRISPR-Cas9. J. Biol. Eng. 10, 6 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dionne, U. et al. Protein context shapes the specificity of SH3 domain-mediated interactions in vivo. Nat. Commun. 12, 1597 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eddy, A. A. Expulsion of uracil and thymine from the yeast Saccharomyces cerevisiae: contrasting responses to changes in the proton electrochemical gradient. Microbiology 143, 219–229 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kurtz, J. E., Exinger, F., Erbs, P. & Jund, R. New insights into the pyrimidine salvage pathway of Saccharomyces cerevisiae: requirement of six genes for cytidine metabolism. Curr. Genet. 36, 130–136 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fujimura, H. Growth inhibition of Saccharomyces cerevisiae by the immunosuppressant leflunomide is due to the inhibition of uracil uptake via Fur4p. Mol. Gen. Genet. 260, 102–107 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Després, P. C., Dubé, A. K., Nielly-Thibault, L., Yachie, N. & Landry, C. R. Double selection enhances the efficiency of Target-AID and Cas9-based genome editing in yeast. G3 8, 3163–3171 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Role of glutamate 64 in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase. Biochemistry 51, 475–486 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ivankov, D. N., Finkelstein, A. V. & Kondrashov, F. A. A structural perspective of compensatory evolution. Curr. Opin. Struct. Biol. 26, 104–112 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mayrose, I., Graur, D., Ben-Tal, N. & Pupko, T. Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Mol. Biol. Evol. 21, 1781–1791 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tarassov, K. An in vivo map of the yeast protein interactome. Science 320, 1465–1470 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Freschi, L., Torres-Quiroz, F., Dubé, A. K. & Landry, C. R. qPCA: a scalable assay to measure the perturbation of protein–protein interactions in living cells. Mol. Biosyst. 9, 36–43 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chang, A. et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49, D498–D508 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mirdita, M. et al. ColabFold – Making protein folding accessible to all. Preprint at bioRxiv https://doi.org/10.1101/2021.08.15.456425 (2022).

  • Pokusaeva, V. O. et al. An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape. PLoS Genet. 15, e1008079 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oliver, J. D. et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl Acad. Sci. USA 113, 12809–12814 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoenigl, M. et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs https://doi.org/10.1007/s40265-021-01611-0 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verweij, P. E., Te Dorsthorst, D. T. A., Janssen, W. H. P., Meis, J. F. G. M. & Mouton, J. W. In vitro activities at pH 5.0 and pH 7.0 and in vivo efficacy of flucytosine against Aspergillus fumigatus. Antimicrob. Agents Chemother. 52, 4483–4485 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gsaller, F. et al. Mechanistic basis of pH-dependent 5-flucytosine resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.02593-17 (2018).

  • Garland, T. Jr. Trade-offs. Curr. Biol. 24, R60–R61 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chang, Y. C. et al. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in cryptococci. Nat. Commun. 12, 3418 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Billmyre, R. B., Applen Clancey, S., Li, L. X., Doering, T. L. & Heitman, J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus. Nat. Commun. 11, 127 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Goldstein, A. L. & McCusker, J. H. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • DeLuna, A., Springer, M., Kirschner, M. W. & Kishony, R. Need-based up-regulation of protein levels in response to deletion of their duplicate genes. PLoS Biol. 8, e1000347 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Casadaban, M. J. & Cohen, S. N. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yachie, N. et al. Pooled-matrix protein interaction screens using barcode fusion genetics. Mol. Syst. Biol. 12, 863 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Andrews, S. FastQC: A quality control analysis tool for high throughput sequencing data (Babraham Bioinformatics, 2016); https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reback, J. et al. pandas-dev/pandas: Pandas 1.3.4. Zenodo https://doi.org/10.5281/zenodo.5574486 (2021).

  • Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

    Article 

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-31 (2012).

  • Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rice, P., Longden, L. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. https://doi.org/10.1016/S0168-9525(00)02024-2 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Ryan, O. W., Poddar, S. & Cate, J. H. D. Crispr–cas9 genome engineering in Saccharomyces cerevisiae cells. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot086827 (2016).

  • Amberg, D. C., Burke, D. J. & Strathern, J. N. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual (CSHL Press, 2005).

  • Ireton, G. C., Black, M. E. & Stoddard, B. L. The 1.14 A crystal structure of yeast cytosine deaminase: evolution of nucleotide salvage enzymes and implications for genetic chemotherapy. Structure 11, 961–972 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schymkowitz, J. et al. The FoldX web server: an online force field. Nucleic Acids Res. 33, W382–W388 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Marchant, A. et al. The role of structural pleiotropy and regulatory evolution in the retention of heteromers of paralogs. eLife 8, e46754 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Usmanova, D. R. et al. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation. Bioinformatics 34, 3653–3658 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chorostecki, U., Molina, M., Pryszcz, L. P. & Gabaldón, T. MetaPhOrs 2.0: integrative, phylogeny-based inference of orthology and paralogy across the tree of life. Nucleic Acids Res. 48, W553–W557 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).

    Article 
    CAS 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lõoke, M., Kristjuhan, K. & Kristjuhan, A. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50, 325–328 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schlecht, U., Miranda, M., Suresh, S., Davis, R. W. & St Onge, R. P. Multiplex assay for condition-dependent changes in protein-protein interactions. Proc. Natl Acad. Sci. USA 109, 9213–9218 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Diss, G. & Lehner, B. The genetic landscape of a physical interaction. eLife 7, e32472 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A simple way to significantly increase lifetimes of fuel cells and other devices

    High energy and hungry for the hardest problems