Chaigneau, A., Gizolme, A. & Grados, C. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79, 106–119 (2008).
Google Scholar
McGillicuddy, D. J. Jr et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).
Google Scholar
Dufois, F. et al. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2, 1–7 (2016).
Google Scholar
Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PLoS ONE 7, e30161 (2012).
Google Scholar
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–333 (2011).
Google Scholar
Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Global Biogeochem. Cycles 18, GB3003 (2004).
Google Scholar
Bell, J. D. et al. Diversifying the use of tuna to improve food security and public health in Pacific Island countries and territories. Mar. Policy 51, 584–591 (2015).
Google Scholar
Della Penna, A. & Gaube, P. Mesoscale eddies structure mesopelagic communities. Front. Mar. Sci. 7, 454 (2020).
Google Scholar
Braun, C. D. et al. The functional and ecological significance of deep diving by large marine predators. Ann. Rev. Mar. Sci. 14, 129–159 (2022).
Google Scholar
McGillicuddy, D. J. Jr Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Ann. Rev. Mar. Sci. 8, 125–159 (2016).
Google Scholar
Fennell, S. & Rose, G. Oceanographic influences on deep scattering layers across the North Atlantic. Deep-Sea Res. Part I Oceanogr. Res. Pap. 105, 132–141 (2015).
Google Scholar
Duffy, L. M. et al. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. Part II Topical Stud. Oceanogr. 140, 55–73 (2017).
Google Scholar
Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).
Google Scholar
Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. Proc. Natl Acad. Sci. USA 116, 17187–17192 (2019).
Google Scholar
Doyle, T. K. et al. Leatherback turtles satellite-tagged in European waters. Endanger. Species Res. 4, 23–31 (2008).
Google Scholar
Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).
Google Scholar
Lynham, J., Nikolaev, A., Raynor, J., Vilela, T. & Villaseñor-Derbez, J. C. Impact of two of the world’s largest protected areas on longline fishery catch rates. Nat. Commun. 11, 979 (2020).
Google Scholar
Polovina, J. J., Abecassis, M., Howell, E. A. & Woodworth, P. Increases in the relative abundance of mid-trophic level fishes concurrent with declines in apex predators in the subtropical North Pacific, 1996-2006. Fish. Bull. 107, 523–531 (2009).
Royer, T. C. Ocean eddies generated by seamounts in the North Pacific. Science 199, 1063–1064 (1978).
Google Scholar
Liu, Y. et al. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Res. Part I Oceanogr. Res. Pap. 68, 54–67 (2012).
Google Scholar
Bernstein, R. L. & White, W. B. Time and length scales of baroclinic eddies in the central North Pacific Ocean. J. Phys. Oceanogr. 4, 613–624 (1974).
Google Scholar
Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).
Google Scholar
Woodworth, P. A. et al. Eddies as offshore foraging grounds for melon-headed whales (Peponocephala electra). Mar. Mammal Sci. 28, 638–647 (2012).
Google Scholar
Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PLoS ONE 12, e0172839 (2017).
Google Scholar
Chambault, P. et al. Swirling in the ocean: immature loggerhead turtles seasonally target old anticyclonic eddies at the fringe of the North Atlantic Gyre. Prog. Oceanogr. 175, 345–358 (2019).
Google Scholar
Gaube, P., McGillicuddy Jr, D., Chelton, D., Behrenfeld, M. & Strutton, P. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Oceans 119, 8195–8220 (2014).
Waga, H., Kirawake, T. & Ueno, H. Impacts of mesoscale eddies on phytoplankton size structure. Geophys. Res. Lett. 46, 13191–13198 (2019).
Google Scholar
Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
Google Scholar
Chen, Y.-lL. et al. Biologically active warm-core anticyclonic eddies in the marginal seas of the western Pacific Ocean. Deep Sea Res. Part I 106, 68–84 (2015).
Google Scholar
Harke, M. J. et al. Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environ. Microbiol. 23, 4807–4822 (2021).
Google Scholar
Hawco, N. J. et al. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochem. Cycles 35, e2021GB007112 (2021).
Google Scholar
Klevjer, T. A. et al. Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers. Sci. Rep. 6, 19873 (2016).
Google Scholar
Behrenfeld, M. J. et al. Global satellite-observed daily vertical migrations of ocean animals. Nature 576, 257–261 (2019).
Google Scholar
Madigan, D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).
Google Scholar
Arostegui, M., Gaube, P. & Braun, C. Movement ecology and stenothermy of satellite-tagged shortbill spearfish (Tetrapturus angustirostris). Fish. Res. 215, 21–26 (2019).
Google Scholar
Lehodey, P., Senina, I. & Murtugudde, R. A spatial ecosystem and populations dynamics model (SEAPODYM)—modeling of tuna and tuna-like populations. Prog. Oceanogr. 78, 304–318 (2008).
Google Scholar
Varghese, S. P., Somvanshi, V. S. & Dalvi, R. S. Diet composition, feeding niche partitioning and trophic organisation of large pelagic predatory fishes in the eastern Arabian Sea. Hydrobiologia 736, 99–114 (2014).
Google Scholar
Ward, P. & Myers, R. A. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat.Sci. 62, 1130–1142 (2005).
Google Scholar
Kai, E. T. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl Acad. Sci. USA 106, 8245–8250 (2009).
Google Scholar
Lima, I. D., Olson, D. B. & Doney, S. C. Biological response to frontal dynamics and mesoscale variability in oligotrophic environments: biological production and community structure. J. Geophys. Res. Oceans 107, 25-1–25-21 (2002).
Google Scholar
Spall, S. A. & Richards, K. J. A numerical model of mesoscale frontal instabilities and plankton dynamics—I. model formulation and initial experiments. Deep-Sea Res. Part I Oceanogr. Res. Pap. 47, 1261–1301 (2000).
Google Scholar
Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019).
Google Scholar
Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P. & Rivière, P. Bringing physics to life at the submesoscale. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052756 (2012).
Google Scholar
Guidi, L. et al. Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre? J. Geophys. Res. Biogeosciences https://doi.org/10.1029/2012JG001984 (2012).
Google Scholar
Chow, C. H., Cheah, W., Tai, J. H. & Liu, S. F. Anomalous wind triggered the largest phytoplankton bloom in the oligotrophic North Pacific Subtropical Gyre. Sci. Rep. 9, 15550 (2019).
Google Scholar
Guo, M., Xiu, P., Chai, F. & Xue, H. Mesoscale and submesoscale contributions to high sea surface chlorophyll in subtropical gyres. Geophys. Res. Lett. 46, 13217–13226 (2019).
Google Scholar
Klein, P. et al. Ocean-scale interactions from space. Earth Space Sci. 6, 795–817 (2019).
Google Scholar
Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).
Google Scholar
St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Marine Sci. 3, 31 (2016).
Bigelow, K., Musyl, M. K., Poisson, F. & Kleiber, P. Pelagic longline gear depth and shoaling. Fish. Res. 77, 173–183 (2006).
Google Scholar
Brodziak, J. & Walsh, W. A. Model selection and multimodel inference for standardizing catch rates of bycatch species: a case study of oceanic whitetip shark in the Hawaii-based longline fishery. Can. J. Fish. Aquat.Sci. 70, 1723–1740 (2013).
Google Scholar
Woodworth-Jefcoats, P. A., Polovina, J. & Drazen, J. Synergy among oceanographic variability, fishery expansion, and longline catch composition in the central North Pacific Ocean. Fish. Bull. 116, 228–239 (2018).
Google Scholar
Boggs, C. H. Depth, capture time, and hooked longevity of longline-caught pelagic fish: timing bites of fish with chips. Fish. Bull. 90, 642–658 (1992).
Walsh, W. A. & Brodziak, J. Applications of Hawaii longline fishery observer and logbook data for stock assessment and fishery research. NOAA Tech. Memo. 57, 62 (2016).
Walsh, W. A. & Brodziak, J. Billfish CPUE standardization in the Hawaii longline fishery: model selection and multimodel inference. Fish. Res. 166, 151–162 (2015).
Google Scholar
Gilman, E., Chaloupka, M., Fitchett, M., Cantrell, D. L. & Merrifield, M. Ecological responses to blue water MPAs. PLoS ONE 15, e0235129 (2020).
Google Scholar
Portner, E. J., Polovina, J. J. & Choy, C. A. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox). Deep-Sea Research Part I 125, 40–51 (2017).
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
Google Scholar
Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.3.0 http://florianhartig.github.io/DHARMa/ (2020).
Jackson, C. H. Multi-state models for panel data: the msm package for R. J. Stat. Softw. https://doi.org/10.18637/jss.v038.i08 (2011).
Google Scholar
Bates, D. et al. lme4: Linear mixed-effects models using ’Eigen’ and S4. R package version 1.1-25 https://github.com/lme4/lme4/ (2020).
Lenth, R. et al. emmeans: Estimated marginal means, aka least-squares mean. R package version 1.7.2 https://github.com/rvlenth/emmeans (2022).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.r-project.org/
Source: Ecology - nature.com