Hawkes, C. V., Bull, J. J. & Lau, J. A. Symbiosis and stress: how plant microbiomes affect host evolution. Philos. T. R. Soc. B. 375, 20190590 (2020).
Google Scholar
Leopold, D. R. & Busby, P. E. Host Genotype and Colonist Arrival Order Jointly Govern Plant Microbiome Composition and Function. Curr. Biol. 30, 3260–3266 (2020).
Google Scholar
Morella, N. M. et al. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc. Natl Acad. Sci. USA 117, 1148–1159 (2020).
Google Scholar
Garcia, J. & Kao-Kniffin, J. Microbial Group Dynamics in Plant Rhizospheres and Their Implications on Nutrient Cycling. Front. Plant Sci. 9, 1516 (2018).
Google Scholar
Marschner P. Plant-Microbe Interactions in the Rhizosphere and Nutrient Cycling in Nutrient Cycling in Terrestrial Ecosystems (eds. Marschner, P. & Rengel, Z.) 159–183 (Springer, 2007).
Vannier, N., Agler, M. & Hacquard, S. Microbiota-mediated disease resistance in plants. PLoS Pathog. 15, e1007740 (2019).
Google Scholar
Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 6584 (2019).
Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 31, 440–452 (2016).
Google Scholar
Dessaux, Y., Grandclemént, C. & Faure, D. Engineering the Rhizosphere. Trends Plant Sci. 21, 266–278 (2016).
Google Scholar
Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).
Google Scholar
Panke-Buisse, K., Poole, A., Goodrich, J., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).
Google Scholar
van den Bergh, B. et al. Experimental Design, Population Dynamics, and Diversity in Microbial Experimental Evolution. Microbiol. Mol. Biol. Rev. 82, e00008–e00018 (2018).
Google Scholar
Garcia, J. & Kao-Kniffin, J. Can dynamic network modelling be used to identify adaptive microbiomes? Funct. Ecol. 34, 2065–2074 (2020).
Google Scholar
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
Google Scholar
Wilson, D. & Wilson, E. Evolution “for the good of the group”. Am. Sci. 96, 380–389 (2008).
Google Scholar
de la Fuente Cantó, C. et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951–964 (2020).
Google Scholar
Sachs, J., Mueller, U., Wilcox, T. & Bull, J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).
Google Scholar
Harrington, K. & Sanchez, A. Eco-evolutionary dynamics of complex social strategies in microbial communities. Commun. Integr. Biol. 7, e28230 (2014).
Google Scholar
Rauch, J., Kondev, J. & Sanchez, A. Cooperators trade off ecological resilience and evolutionary stability in public goods games. J. R. Soc. Interface 14, 20160967 (2017).
Google Scholar
Sexton, D. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).
Google Scholar
Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146 (2019).
Google Scholar
Turner, T. et al. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere. microbiome plants ISME J. 7, 2248–2258 (2013).
Google Scholar
Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).
Google Scholar
George, E., Marschner, H. & Jakobsen, I. Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil. Crit. Rev. Biotechnol. 15, 257–270 (1995).
Google Scholar
Hodge, A. & Fitter Alastair, H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107, 13754–13759 (2010).
Google Scholar
Lambers, H. & Teste, F. P. Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game. Plant Cell Environ. 36, 1911–1915 (2013).
Google Scholar
Delaux, P. M. et al. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLoS Genet. 10, e1004487 (2014).
Google Scholar
Anas, M. et al. Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 53, 47 (2020).
Google Scholar
Madhaiyan, M. et al. Arachidicoccus rhizosphaerae gen. nov., sp. nov., a plant-growth-promoting bacterium in the family Chitinophagaceae isolated from rhizosphere soil. Int. J. Syst. Evol. Microbiol. 65, 578–586 (2015).
Google Scholar
Song, H. et al. Environmental filtering of bacterial functional diversity along an aridity gradient. Sci. Rep. 9, 866 (2019).
Google Scholar
Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, S15 (2011).
Google Scholar
Kuntal, B. K., Chandrakar, P., Sadhu, S. & Mandhi, S. S. ‘NetShift’: a methodology for understanding ‘driver microbes’ from healthy and disease microbiome datasets. ISME J. 13, 442–454 (2019).
Google Scholar
Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 25, 217–228 (2017).
Google Scholar
Hu, Q. et al. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. NPJ Biofilms Microbiomes 6, 8 (2020).
Google Scholar
Faust, K. et al. Cross-biome comparison of microbial association networks. Front. Microbiol. 6, 1200 (2015).
Google Scholar
Rengel, Z. & Marschner, P. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. N. Phytol. 168, 305–312 (2005).
Google Scholar
Marschner, P. The Role of Rhizosphere Microorganisms in Relation to P Uptake by Plants in The Ecophysiology of Plant-Phosphorus Interactions (eds. White, P. & Hammond, J.) 165–167 (Springer, 2008).
Repert, D., Underwood, J., Smith, R. & Song, B. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station. J. Geophys. Res. Biogeosci. 119, 2328–2344 (2014).
Google Scholar
Rolletschek, H. et al. Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol. 137, 1236–1249 (2005).
Google Scholar
Sanders, A. et al. AAP1 regulates import of amino acids into developing Arabidopsis embryos. Plant J. 59, 540–552 (2009).
Google Scholar
Carter, A. M. & Tegeder, M. Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr. Biol. 26, 2044–2051 (2016).
Google Scholar
Meier, I. C. et al. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. N. Phytol. 226, 583–594 (2020).
Google Scholar
Xu, Y., He, J., Cheng, W., Xing, X. & Li, L. Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol. 3, 201–207 (2010).
Google Scholar
Henneron, L. et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. N. Phytol. 228, 1269–1282 (2020).
Google Scholar
Hobbie, E. A. & Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. N. Phytol. 196, 367–382 (2012).
Google Scholar
Zhou, S. et al. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15N isotopic technique. Sci. Total Environ. 430, 93–100 (2012).
Google Scholar
Fuertes-Mendizábal, T. et al. 15N Natural Abundance Evidences a Better Use of N Sources by Late Nitrogen Application in Bread Wheat. Front. Plant Sci. 9, 853 (2018).
Google Scholar
Yoneyama, T., Omata, T., Nakata, S. & Yazaki, J. Fractionation of Nitrogen Isotopes during the Uptake and Assimilation of Ammonia by Plants. Plant Cell Physiol. 32, 1211–1217 (1991).
Google Scholar
Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, 356 (2013).
Google Scholar
Granada, C., Passaglia, L., de Souza, E. & Sperotto, R. Is Phosphate Solubilization the Forgotten Child of Plant Growth-Promoting Rhizobacteria? Front. Microbiol. 9, 2054 (2018).
Google Scholar
Compant, S., Duffy, B., Nowak, J., Clément, C. & Barka, E. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl. Environ. Microbiol. 71, 4951 (2005).
Google Scholar
Berges, J.A., & Mulholland, M.R. Enzymes and nitrogen cycling in Nitrogen in the marine environment (eds. Capone, D., Bronk, D., Mulholland, M., & Carpenter, E.) 1385–1444 (Elsevier 2008).
DeAngelis, K. M., Lindow, S. E. & Firestone, M. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microb. Ecol. 66, 197–207 (2008).
Google Scholar
Evans, S., Martiny, J. & Allison, S. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 11, 176–185 (2017).
Google Scholar
Ron, R., Fragman-Sapir, O. & Kadmon, R. (2018). Dispersal increases ecological selection by increasing effective community size. Proc. Natl Acad. Sci. USA. 115, 11280–11285 (2018).
Google Scholar
Busby, P. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).
Google Scholar
Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. & Schäfer, P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. Front. Plant Sci. 9, 1205 (2018).
Google Scholar
Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
Google Scholar
Garcia, J. et al. Selection pressure on the rhizosphere microbiome alters nitrogen use efficiency and seed yield in Brassica rapa. National Center for Biotechnology Information Repository. https://www.ncbi.nlm.nih.gov/sra/PRJNA833111 (2022).
Ruan, Q. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).
Google Scholar
Pollet, T. et al. Prokaryotic community successions and interactions in marine biofilms: the key role of Flavobacteria. FEMS Microbiol. Ecol. 94, fiy083 (2018).
Durno, W. E. et al. Expanding the boundaries of local similarity analysis. BMC Genomics 14, S3 (2013).
Google Scholar
Garcia, J. et al. Selection pressure on the rhizosphere microbiome alters nitrogen use efficiency and seed yield in Brassica rapa. https://doi.org/10.5281/zenodo.6800595 (2022).
Source: Ecology - nature.com