Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).
Turbelin, A. J., Malamud, B. D. & Francis, R. A. Mapping the global state of invasive alien species: Patterns of invasion and policy responses. Glob. Ecol. Biogeogr. 26, 78–92 (2017).
Jackson, M. C. Interactions among multiple invasive animals. Ecology 96, 2035–2041 (2015).
Google Scholar
Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).
Duenas, M. A. et al. The role played by invasive species in interactions with endangered and threatened species in the United States: A systematic review. Biodivers. Conserv. 27, 3171–3183 (2018).
Weidenhamer, J. D. & Callaway, R. M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 36, 59–69 (2010).
Google Scholar
Bajwa, A. A., Chauhan, B. S., Farooq, M., Shabbir, A. & Adkins, S. W. What do we really know about alien plant invasion? A review of the invasion mechanism of one of the world’s worst weeds. Planta 244, 39–57 (2016).
Google Scholar
Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines?. Ecol. Entomol. 46, 729–742. https://doi.org/10.1111/een.12973 (2021).
Google Scholar
Bezemer, T. M., Harvey, J. A. & Cronin, J. T. Response of native insect communities to invasive plants. Annu. Rev. Entomol. 59, 119 (2014).
Google Scholar
Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).
Google Scholar
Kalisz, S., Kivlin, S. N. & Bialic-Murphy, L. Allelopathy is pervasive in invasive plants. Biol. Invasions 23, 367–371 (2021).
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737 (2012).
Google Scholar
Zhang, P., Li, B., Wu, J. & Hu, S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecol. Lett. 22, 200–210 (2019).
Google Scholar
Dudareva, N., Klempien, A., Muhlemann, J. K. & Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198, 16–32 (2013).
Google Scholar
Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582 (2016).
Google Scholar
Bruce, T. J., Wadhams, L. J. & Woodcock, C. M. Insect host location: A volatile situation. Trends Plant Sci. 10, 269–274 (2005).
Google Scholar
Clavijo McCormick, A., Unsicker, S. B. & Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 17, 303–310 (2012).
Google Scholar
Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant–plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).
Google Scholar
Kegge, W. & Pierik, R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci. 15, 126–132 (2010).
Google Scholar
Effah, E., Holopainen, J. K. & Clavijo McCormick, A. Potential roles of volatile organic compounds in plant competition. Perspect. Plant Ecol. Evol. Syst. 38, 58–63 (2019).
Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J. & Unsicker, S. B. Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol. 19, 1–17 (2019).
Karban, R., Wetzel, W. C., Shiojiri, K., Pezzola, E. & Blande, J. D. Geographic dialects in volatile communication between sagebrush individuals. Ecology 97, 2917–2924 (2016).
Google Scholar
Wheeler, G. S., David, A. S. & Lake, E. C. Volatile chemistry, not phylogeny, predicts host range of a biological control agent of Old-World climbing fern. Biol. Control 159, 104636 (2021).
Google Scholar
Li, N. et al. Manipulating two olfactory cues causes a biological control beetle to shift to non-target plant species. J. Ecol. 105, 1534–1546 (2017).
Google Scholar
Buddenhagen, C. E. Broom Control Monitoring at Tongariro National Park (Department of Conservation Wellington, 2000).
Hayes, L. et al. Biocontrol of Weeds: Achievements to Date and Future Outlook. Ecosystem services in New Zealand-conditions and trends Vol. 2, 375–385 (Manaaki Whenua Press, 2013).
Bagnall, A. Heather at Tongariro. A study of a weed introduction. Tussock Grasslands Mt. Lands Inst. Rev 41, 17–21 (1982).
Chapman, H. M. & Bannister, P. The spread of heather, Calluna vulgaris (L.) Hull, into indigenous plant communities of Tongariro National Park. N. Z. J. Ecol. 7–16 (1990).
Effah, E. et al. Effects of two invasive weeds on arthropod community structure on the Central Plateau of New Zealand. Plants 9, 919 (2020).
Google Scholar
Keesing, V. F. Impacts of invasion on community structure: habitat and invertebrate assemblage responses to Calluna vulgaris (L.) Hull invasion, in Tongariro National Park, New Zealand, Massey University Palmerston North, New Zealand, (1995).
Peterson, P. G., Fowler, S. V. & Barrett, P. Is the poor establishment and performance of heather beetle in Tongariro National Park due to the impact of parasitoids predators or disease. N. Z. Plant Prot. 57, 89–93. https://doi.org/10.30843/nzpp.2004.57.6977 (2004).
Google Scholar
Ajpark. The brands and the bees: trade marks and the mānuka challenge for honey businesses, https://www.ajpark.com/insights/the-brands-and-the-bees-trade-marks-and-the-manuka-challenge-for-honey-businesses/#:~:text=M%C4%81nuka%20is%20a%20taonga%20species,may%20be%20offensive%20to%20M%C4%81ori (2021).
Effah, E. et al. Seasonal and environmental variation in volatile emissions of the New Zealand native plant Leptospermum scoparium in weed-invaded and non-invaded sites. Sci. Rep. 10, 1–11 (2020).
Effah, E., Min Tun, K., Rangiwananga, N. & Clavijo McCormick, A. Mānuka clones differ in their volatile profiles: Potential implications for plant defence, pollinator attraction and bee products. Agronomy 12, 169 (2022).
Google Scholar
Effah, E. et al. Natural variation in volatile emissions of the invasive weed Calluna vulgaris in New Zealand. Plants 9, 283 (2020).
Google Scholar
Team, R. C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).
Ripley, B. et al. Package ‘mass’. Cran r 538, 113–120 (2013).
Chen, B. M., Liao, H. X., Chen, W. B., Wei, H. J. & Peng, S. L. Role of allelopathy in plant invasion and control of invasive plants. Allelopathy J 41, 155–166 (2017).
Ninkovic, V., Markovic, D. & Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. 44, 1030–1043 (2021).
Google Scholar
Holopainen, J. K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529–533 (2004).
Google Scholar
Rhoades, D. F. Responses of alder and willow to attack by tent caterpillars and webworms: evidence for pheromonal sensitivity of willows. In Plant Resistance to Insects (ed. Hedin, P. A.) 55–68 (American Chemical Society, 1983).
Hedin, P. A. Plant Resistance to Insects (American Chemical Society, 1983).
Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144 (2010).
Google Scholar
Barbosa, P. et al. Associational resistance and associational susceptibility: Having right or wrong neighbors. Annu. Rev. Ecol. Evol. Syst. 40, 1 (2009).
Kigathi, R. N., Weisser, W. W., Veit, D., Gershenzon, J. & Unsicker, S. B. Plants suppress their emission of volatiles when growing with conspecifics. J. Chem. Ecol. 39, 537–545 (2013).
Google Scholar
Peñuelas, J. & Llusià, J. Influence of intra-and inter-specific interference on terpene emission by Pinus halepensis and Quercus ilex seedlings. Biol. Plant. 41, 139–143 (1998).
Ormeno, E., Fernandez, C. & Mévy, J.-P. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68, 840–852 (2007).
Google Scholar
Himanen, S. J. et al. Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants—A mechanism for associational herbivore resistance?. New Phytol. 186, 722–732 (2010).
Google Scholar
Kessler, A. & Kalske, A. Plant secondary metabolite diversity and species interactions. Annu. Rev. Ecol. Evol. Syst. 49, 115–138 (2018).
Quintana-Rodriguez, E. et al. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol. 103, 250–260 (2015).
Google Scholar
Loreto, F. & D’Auria, S. How do plants sense volatiles sent by other plants? Trends Plant Sci. (2021).
Giordano, D., Facchiano, A., D’Auria, S. & Loreto, F. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. Elife 10, e66741 (2021).
Google Scholar
Ninkovic, V., Markovic, D. & Dahlin, I. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspect. Plant Ecol. Evol. Syst. 23, 11–17 (2016).
Kegge, W. et al. Red: far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann. Bot. 115, 961–970 (2015).
Google Scholar
Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20, 1281–1328 (1994).
Google Scholar
Anderson, P., Sadek, M., Larsson, M., Hansson, B. & Thöming, G. Larval host plant experience modulates both mate finding and oviposition choice in a moth. Anim. Behav. 85, 1169–1175 (2013).
Cunningham, J. P., Moore, C. J., Zalucki, M. P. & West, S. A. Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207, 87–94 (2004).
Google Scholar
McCormick, A. C., Reinecke, A., Gershenzon, J. & Unsicker, S. B. Feeding experience affects the behavioral response of polyphagous gypsy moth caterpillars to herbivore-induced poplar volatiles. J. Chem. Ecol. 42, 382–393 (2016).
Google Scholar
Proffit, M., Khallaf, M. A., Carrasco, D., Larsson, M. C. & Anderson, P. ‘Do you remember the first time?’ Host plant preference in a moth is modulated by experiences during larval feeding and adult mating. Ecol. Lett. 18, 365–374 (2015).
Google Scholar
Mayhew, P. J. Herbivore host choice and optimal bad motherhood. Trends Ecol. Evol. 16, 165–167 (2001).
Google Scholar
Jackson, T. et al. Anticipating the unexpected–managing pasture pest outbreaks after large-scale land conversion (New Zealand Grassland Association, 2012).
Townsend, R. J., Dunbar, J. E. & Jackson, T. A. Flight behaviour of the manuka chafers, Pyronota festiva (Fabricius) and Pyronota setosa (Given) (Coleoptera: Melolonthinae), on the flipped soils of Cape Foulwind on the West Coast of New Zealand. N. Z. Plant Prot. 71, 255–261. https://doi.org/10.30843/nzpp.2018.71.175 (2018).
Google Scholar
Ferguson, C. M. et al. Quantifying the economic cost of invertebrate pests to New Zealand’s pastoral industry. N. Z. J. Agric. Res. 62, 255–315 (2019).
Cunningham, J. Can mechanism help explain insect host choice?. J. Evol. Biol. 25, 244–251 (2012).
Google Scholar
Syrett, P., Smith, L. A., Bourner, T. C., Fowler, S. V. & Wilcox, A. A European pest to control a New Zealand weed: Investigating the safety of heather beetle, Lochmaea suturalis (Coleoptera: Chrysomelidae) for biological control of heather, Calluna vulgaris. Bull. Entomol. Res. 90, 169–178. https://doi.org/10.1017/S0007485300000286 (2000).
Google Scholar
Fowler, S., Harman, H., Memmott, J., Peterson, P. & Smith, L. In Proceedings of the XII International Symposium on Biological Control of Weeds (eds Julien, M. H. et al.) 495–502.
Fowler, S. V. et al. Investigating the poor performance of heather beetle, Lochmaea suturalis (Thompson) (Coleoptera: Chrysomelidae), as a weed biocontrol agent in New Zealand: Has genetic bottlenecking resulted in small body size and poor winter survival?. Biol. Control 87, 32–38 (2015).
Effah, E. et al. Herbivory and attenuated UV radiation affect volatile emissions of the invasive weed Calluna vulgaris. Molecules 25, 3200 (2020).
Google Scholar
Pearson, D. E. & Callaway, R. M. Indirect nontarget effects of host-specific biological control agents: Implications for biological control. Biol. Control 35, 288–298 (2005).
Rand, T. A. & Louda, S. M. Exotic weed invasion increases the susceptibility of native plants to attack by a biocontrol herbivore. Ecology 85, 1548–1554. https://doi.org/10.1890/03-3067 (2004).
Google Scholar
Source: Ecology - nature.com