in

Background climate conditions regulated the photosynthetic response of Amazon forests to the 2015/2016 El Nino-Southern Oscillation event

  • Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar 

  • Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).

    CAS 
    Article 

    Google Scholar 

  • Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Env. Resour. 28, 137–167 (2003).

    Article 

    Google Scholar 

  • Marengo, J. A. et al. Changes in climate and land use over the amazon region: current and future variability and trends. Front. Earth Sci. 6, 1–21 (2018).

    Article 

    Google Scholar 

  • Anderson-Teixeira, K. J. et al. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Change 2, 177–181 (2012).

    Article 

    Google Scholar 

  • Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).

    Article 

    Google Scholar 

  • Lewis, S. L., Brando, P. M., Phillips, O. L., Van Der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).

    CAS 
    Article 

    Google Scholar 

  • Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Article 
    CAS 

    Google Scholar 

  • Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).

  • Koren, G. et al. Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño. Philos. Trans. R. Soc. Lond. B Biol. Sci 373, 20170408 (2018).

    Article 
    CAS 

    Google Scholar 

  • Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).

    CAS 
    Article 

    Google Scholar 

  • Sousa, T. R. et al. Palms and trees resist extreme drought in Amazon forests with shallow water tables. J. Ecol. 108, 2070–2082 (2020).

    CAS 
    Article 

    Google Scholar 

  • Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. New Phytol. 223, 1253–1266 (2019).

    CAS 
    Article 

    Google Scholar 

  • Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1900278116 (2019).

  • Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).

    CAS 
    Article 

    Google Scholar 

  • Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B 373, 20170302 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jiménez-Muñoz, J. C., Sobrino, J. A., Mattar, C. & Malhi, Y. Spatial and temporal patterns of the recent warming of the Amazon forest. J. Geophys. Res. Atmos. 118, 5204–5215 (2013).

    Article 

    Google Scholar 

  • Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    CAS 
    Article 

    Google Scholar 

  • Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 60, 12 (2016).

    Google Scholar 

  • Fisher, R. A., Williams, M., de Lourdes Ruivo, M., de Costa, A. L. & Meir, P. Evaluating climatic and soil water controls on evapotranspiration at two Amazonian rainforest sites. Agric. For. Meteorol. 148, 850–861 (2008).

    Article 

    Google Scholar 

  • Marthews, T. R. et al. High-resolution hydraulic parameter maps for surface soils in tropical South America. Geosci. Model Dev. 7, 711–723 (2014).

    Article 

    Google Scholar 

  • Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. New. Phytol. 229, 1995–2006 (2021).

    CAS 
    Article 

    Google Scholar 

  • Castro, A. O. et al. OCO-2 solar-induced chlorophyll fluorescence variability across ecoregions of the amazon basin and the extreme drought effects of El Niño (2015–2016). Remote Sens. 12, 1202 (2020).

    Article 

    Google Scholar 

  • Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sombroek, W. Spatial and temporal patterns of amazon rainfall. Ambio 30, 388–396 (2001).

    CAS 
    Article 

    Google Scholar 

  • Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    CAS 
    Article 

    Google Scholar 

  • Joetzjer, E., Douville, H., Delire, C. & Ciais, P. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Clim. Dyn. 41, 2921–2936 (2013).

    Article 

    Google Scholar 

  • Schietti, J. et al. Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant. Ecol. Divers. 7, 241–253 (2014).

  • Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221, 1457–1465 (2018).

  • Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).

  • Sterck, F., Markesteijn, L., Schieving, F. & Poorter, L. Functional traits determine trade-offs and niches in a tropical forest community. PNAS 108, 20627–20632 (2011).

    CAS 
    Article 

    Google Scholar 

  • Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).

    Article 

    Google Scholar 

  • Guillemot, J. et al. Small and slow is safe: On the drought tolerance of tropical tree species. Glob. Chang. Biol. 28, 2622–2638 (2022).

    CAS 
    Article 

    Google Scholar 

  • DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).

    CAS 
    Article 

    Google Scholar 

  • Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    CAS 
    Article 

    Google Scholar 

  • de Almeida Castanho, A. D. et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Glob. Biogeochem. Cycles 30, 18–39 (2016).

    Article 
    CAS 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Article 

    Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 9, 161–185 (2003).

    Article 

    Google Scholar 

  • Lathière, J. et al. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos. Chem. Phys. 6, 2129–2146 (2006).

    Article 

    Google Scholar 

  • Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. New Phytol. 187, 647–65 (2010).

    Article 

    Google Scholar 

  • Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models. Glob. Chang. Biol. 22, 3996–4013 (2016).

    Article 

    Google Scholar 

  • Thonicke, K. et al. Simulating functional diversity of European natural forests along climatic gradients. J. Biogeogr. 47, 1069–1085 (2020).

    Article 

    Google Scholar 

  • Feldpausch, T. R. et al. Height-diameter allometry of tropical forest trees. Biogeosciences 8, 1081–1106 (2011).

    Article 

    Google Scholar 

  • Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).

    Article 

    Google Scholar 

  • Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, 1–14 (2017).

    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Running, Steve, Mu, Qiaozhen & Zhao, Maosheng. MOD16A2 MODIS/Terra net evapotranspiration 8-day L4 global 500m. https://doi.org/10.5067/MODIS/MOD16A2.006 (2017).

  • van Schaik, E. et al. Improved SIFTER v2 algorithm for long-term GOME-2A satellite retrievals of fluorescence with a correction for instrument degradation. https://doi.org/10.5194/amt-2019-384 (2020).

  • Kooreman, M. L. et al. GOME-2A SIFTER v2 (2007-2018) [Data set]. SIFTER sun-induced vegetation fluorescence data from GOME-2A (Version 2.0) [Data set]. Royal Netherlands Meteorological Institute (KNMI). https://doi.org/10.21944/gome2a-sifter-v2-sun-induced-fluorescence.

  • Hoese, D. et al. pytroll/pyresample: Version 1.23.0. Zenodo, https://doi.org/10.5281/zenodo.6375741 (2022).

  • Kooreman, M., Tuinder, O., Boersma, K. F. & van Schaik, E. Algorithm Theoretical Basis Document for the GOME-2 NRT, Offline and Data Record Sun-Induced Fluorescence Products. (2019).

  • Wigneron, J.-P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).

    CAS 
    Article 

    Google Scholar 

  • Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl. Acad. Sci. USA 116, 22393–22398 (2019).

    CAS 
    Article 

    Google Scholar 

  • Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).

    CAS 
    Article 

    Google Scholar 

  • Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wood, J. D. et al. Multiscale analyses of solar-induced florescence and gross primary production. Geophys. Res. Lett. 44, 533–541 (2017).

    Article 

    Google Scholar 

  • Verma, M. et al. Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site. J. Geophys. Res. Biogeosci. 122, 716–733 (2017).

    Article 

    Google Scholar 

  • Parazoo, N. C. et al. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Glob. Chang Biol. 20, 3103–3121 (2014).

    Article 

    Google Scholar 

  • Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. https://cds.climate.copernicus.eu/cdsapp#!/home (2017).

  • Goddard Earth Sciences Data and Information Services Center (GES DISC). Tropical Rainfall Measuring Mission (TRMM) – TRMM (TMPA/3B43) Rainfall Estimate L3 1 month 0.25 degree x 0.25 degree V7. https://doi.org/10.5067/TRMM/TMPA/MONTH/7 (2011).

  • Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34 (2007).

  • Paca, V. H. et al. The spatial variability of actual evapotranspiration across the Amazon River Basin based on remote sensing products validated with flux towers. Ecol. Process. 8, 6 (2019).

  • Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).

    Article 

    Google Scholar 

  • Maeda, E. E. et al. Evapotranspiration seasonality across the Amazon Basin. Earth Syst. Dyn. 8, 439–454 (2017).

    Article 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).

    Article 
    CAS 

    Google Scholar 

  • Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large-scale hydrological refugia from drought? New Phytol. https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17914 .

  • Walsh, R. P. D. & Lawler, D. M. Rainfall seasonality: description, spatial patterns and change through time. Weather 36, 201–208 (1981).

    Article 

    Google Scholar 

  • Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. https://doi.org/10.1016/j.rse.2017.06.031 (2017).

  • Heinze, G., Wallisch, C. & Dunkler, D. Variable selection – a review and recommendations for the practicing statistician. Biom. J. 60, 431–449 (2018).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

  • QGIS.org. QGIS Geographic Information System (QGIS Association, 2022).

  • Fancourt, M. Repository for Code, Data and Figures. https://zenodo.org/badge/latestdoi/514231211 (2022).


  • Source: Ecology - nature.com

    Cracking the carbon removal challenge

    Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis