in

Genic distribution modelling predicts adaptation of the bank vole to climate change

  • Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article 

    Google Scholar 

  • Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189 (2018).

    Article 

    Google Scholar 

  • Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Article 

    Google Scholar 

  • Bradshaw, A. D. & McNeilly, T. Evolutionary response to global climatic change. Ann. Bot. 67, 5–14 (1991).

    Article 

    Google Scholar 

  • Harter, D. E. V. et al. Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 17, 160–183 (2015).

    Article 

    Google Scholar 

  • Veron, S., Haevermans, T., Govaerts, R., Mouchet, M. & Pellens, R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 9, 1–12 (2019).

    Article 
    CAS 

    Google Scholar 

  • Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gilbert, K. J. & Whitlock, M. C. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 30, 591–602 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Christmas, M. J., Breed, M. F. & Lowe, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 17, 305–320 (2015).

    Article 
    CAS 

    Google Scholar 

  • Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA 116, 2152–2157 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoban, S. et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 188, 379–397 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Catullo, R. A., Llewelyn, J., Phillips, B. L. & Moritz, C. C. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 29, R996–R1007 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).

    Article 

    Google Scholar 

  • Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA 106, 19729–19736 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H. H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Razgour, O. et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 18, 18–31 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P. & Eguiarte, L. E. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Proc. R. Soc. B 286, 20190486 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 3, cov056 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hall, S. J. G. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160 (1979).

    Article 

    Google Scholar 

  • Kotlík, P. et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B 281, 20140021 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Searle, J. B. et al. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Escalante, M. A., Horníková, M., Marková, S. & Kotlík, P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 11, 8054–8070 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reischl, E., Dafre, A. L., Franco, J. L. & Wilhelm Filho, D. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 146, 22–53 (2007).

    Article 
    CAS 

    Google Scholar 

  • Storz, J. F. & Wheat, C. W. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64, 2489–2509 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rossi, R. et al. Different metabolizing ability of thiol reactants in human and rat blood. Biochemical and pharmacological implications. J. Biol. Chem. 276, 7004–7010 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vitturi, D. A. et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 55, 119–129 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Petersen, A. G. et al. Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle Trachemys scripta: Implications for antioxidant defense and O2 transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314, R84–R93 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Paital, B. et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 7, 110–127 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jacobs, P. J., Oosthuizen, M. K., Mitchell, C., Blount, J. D. & Bennett, N. C. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 15, e0242279 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kotlík, P., Marková, S., Horníková, M., Escalante, M. A. & Searle, J. B. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 10, 866605 (2022).

    Article 

    Google Scholar 

  • Strážnická, M., Marková, S., Searle, J. B. & Kotlík, P. Playing hide-and-seek in beta-globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene guplicates. Genes 9, 492 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stocker, T. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

  • Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 11, 1504–1513 (2005).

    Article 

    Google Scholar 

  • Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213, 63–72 (2008).

    Article 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Warren, D. L. et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).

    Article 

    Google Scholar 

  • Mayes, J. & Wheeler, D. Regional weather and climates of the British Isles—part 1: introduction. Weather 68, 3–8 (2013).

    Article 

    Google Scholar 

  • Kotlík, P., Marková, S., Konczal, M., Babik, W. & Searle, J. B. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B 285, 20172624 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).

    Article 

    Google Scholar 

  • Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. N. Phytol. 222, 1757–1765 (2019).

    Article 

    Google Scholar 

  • Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Article 

    Google Scholar 

  • Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Twenty-first International Conference on Machine Learning – ICML ’04 9, 83 (ACM Press, 2004).

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Zeng, Y., Low, B. W. & Yeo, D. C. J. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 341, 5–13 (2016).

    Article 

    Google Scholar 

  • Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611 (2010).

    Article 

    Google Scholar 

  • Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).

    Article 

    Google Scholar 

  • Dufresne, J. L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

    Article 

    Google Scholar 

  • Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).

    Article 

    Google Scholar 

  • Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    Article 

    Google Scholar 

  • Schoener, T. W. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the carbon removal challenge

    Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis