in

Ecological niche modeling based on ensemble algorithms to predicting current and future potential distribution of African swine fever virus in China

  • Galindo, I. & Alonso, C. African swine fever virus: A review. Viruses 9, 103 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Blome, S., Franzke, K. & Beer, M. African swine fever: A review of current knowledge. Virus Res. 2020, 198099 (2020).

    Article 
    CAS 

    Google Scholar 

  • Li, X. & Tian, K. African swine fever in China. Vet. Rec. 183, 300 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Wang, T., Sun, Y. & Qiu, H. J. African swine fever: An unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 66–70 (2018).

    Article 

    Google Scholar 

  • Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D. & Richt, J. A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 7, 215 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ge, S. et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 1, 221–228 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Woonwong, Y., Do, T. D. & Thanawongnuwech, R. The future of the pig industry after the introduction of African swine fever into Asia. Anim. Front. 10, 30–37 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mulieri, P. R. & Patitucci, L. D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 118, 1077–1086 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Escobar, L. E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions https://doi.org/10.1007/s10530-022-02838-y (2022).

    Article 

    Google Scholar 

  • Wen, X. et al. Prediction of the potential distribution pattern of the great gerbil (Rhombomys opimus) under climate change based on ensemble modelling. Pest Manag. Sci. 78, 3128–3134 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cheng, Y. et al. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 17, 1–14 (2018).

    Article 

    Google Scholar 

  • Naimi, B. & Araújo, M. B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).

    Article 

    Google Scholar 

  • Georges, D. & Thuiller, W. An example of species distribution modeling with biomod2. https://r-forge.r-project.org/…/inst/doc/Simple_species_modelling.pdf?root=biomod (2013).

  • Thuiller, W. BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).

    ADS 
    Article 

    Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article 

    Google Scholar 

  • Thuiller, W. Editorial commentary on “BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change”. Glob. Change Biol. 20, 3591–3592 (2014).

    ADS 
    Article 

    Google Scholar 

  • Navarro-Cerrillo, R. M., Duque-Lazo, J., Manzanedo, R. D., Sánchez-Salguero, R. & Palacios-Rodriguez, G. Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: An ensemble niche-based approach. iForest Biogeosci. For. 11, 396–405 (2018).

    Article 

    Google Scholar 

  • Assefa, A., Tibebu, A., Bihon, A., Dagnachew, A. & Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 12, 1748 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS 
    Article 

    Google Scholar 

  • Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2020).

    Article 

    Google Scholar 

  • Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2010).

    Article 

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • Xiao-Ge, X. et al. Introduction of BCC models and its participation in CMIP6. Clim. Change Res. 5, 533–539 (2019).

    Google Scholar 

  • Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).

    ADS 
    Article 

    Google Scholar 

  • Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Assefa, A., Tibebu, A., Bihon, A. & Yimana, M. Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Transbound Emerg. Dis. 68, 3601–3610 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Jori, F. & Bastos, A. D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Teklue, T., Sun, Y., Abid, M., Luo, Y. & Qiu, H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg. Dis. 67, 529–542 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Arias, M. et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chenais, E. et al. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag. 5, 1–10 (2019).

    Article 

    Google Scholar 

  • Quembo, C. J., Jori, F., Vosloo, W. & Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 65, 420–431 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Torres, J. R. et al. Chikungunya fever: Atypical and lethal cases in the Western hemisphere: A Venezuelan experience. IDCases 2, 6–10 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Nuanualsuwan, S. et al. Persistence of African swine fever virus on porous and non-porous fomites at environmental temperatures. Porc. Health Manag. 8, 34 (2022).

    Article 

    Google Scholar 

  • Davies, K. et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg. Dis. 64, 425–431 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Salari, L. S., Vatandoost, H., Telmadarraiy, Z., Entezar, M. R. & Kia, E. Seasonal activity of ticks and their importance in tick-borne infectious diseases in West Azerbaijan, Iran. J. Arthropod. Borne Dis. 2, 28–34 (2008).

    Google Scholar 

  • Vial, L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jian, L. et al. WANG potential adaptability of soft tick vectors of African swine fever to China. Chin. J. Vect. Biol. Control 21, 317–320 (2010).

    Google Scholar 

  • Cwynar, P., Stojkov, J. & Wlazlak, K. African swine fever status in Europe. Viruses 11, 310 (2019).

    PubMed Central 
    Article 

    Google Scholar 

  • Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Cracking the carbon removal challenge

    Evaluation of animal and plant diversity suggests Greenland’s thaw hastens the biodiversity crisis