Galindo, I. & Alonso, C. African swine fever virus: A review. Viruses 9, 103 (2017).
Google Scholar
Blome, S., Franzke, K. & Beer, M. African swine fever: A review of current knowledge. Virus Res. 2020, 198099 (2020).
Google Scholar
Li, X. & Tian, K. African swine fever in China. Vet. Rec. 183, 300 (2018).
Google Scholar
Wang, T., Sun, Y. & Qiu, H. J. African swine fever: An unprecedented disaster and challenge to China. Infect. Dis. Poverty 7, 66–70 (2018).
Google Scholar
Gaudreault, N. N., Madden, D. W., Wilson, W. C., Trujillo, J. D. & Richt, J. A. African swine fever virus: An emerging DNA arbovirus. Front. Vet. Sci. 7, 215 (2020).
Google Scholar
Ge, S. et al. Molecular characterization of African swine fever virus, China, 2018. Emerg. Infect. Dis. 24, 2131–2133 (2018).
Google Scholar
Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food 1, 221–228 (2020).
Google Scholar
Woonwong, Y., Do, T. D. & Thanawongnuwech, R. The future of the pig industry after the introduction of African swine fever into Asia. Anim. Front. 10, 30–37 (2020).
Google Scholar
Mulieri, P. R. & Patitucci, L. D. Using ecological niche models to describe the geographical distribution of the myiasis-causing Cochliomyia hominivorax (Diptera: Calliphoridae) in southern South America. Parasitol. Res. 118, 1077–1086 (2019).
Google Scholar
Escobar, L. E. Ecological niche modeling: An introduction for veterinarians and epidemiologists. Front. Vet. Sci. 7, 519059 (2020).
Google Scholar
Bosso, L. et al. The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions https://doi.org/10.1007/s10530-022-02838-y (2022).
Google Scholar
Wen, X. et al. Prediction of the potential distribution pattern of the great gerbil (Rhombomys opimus) under climate change based on ensemble modelling. Pest Manag. Sci. 78, 3128–3134 (2022).
Google Scholar
Cheng, Y. et al. Evaluating the risk for Usutu virus circulation in Europe: Comparison of environmental niche models and epidemiological models. Int. J. Health Geogr. 17, 1–14 (2018).
Google Scholar
Naimi, B. & Araújo, M. B. Sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).
Google Scholar
Georges, D. & Thuiller, W. An example of species distribution modeling with biomod2. https://r-forge.r-project.org/…/inst/doc/Simple_species_modelling.pdf?root=biomod (2013).
Thuiller, W. BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).
Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD: A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Google Scholar
Thuiller, W. Editorial commentary on “BIOMOD: Optimizing predictions of species distributions and projecting potential future shifts under global change”. Glob. Change Biol. 20, 3591–3592 (2014).
Google Scholar
Navarro-Cerrillo, R. M., Duque-Lazo, J., Manzanedo, R. D., Sánchez-Salguero, R. & Palacios-Rodriguez, G. Climate change may threaten the southernmost Pinus nigra subsp. salzmannii (Dunal) Franco populations: An ensemble niche-based approach. iForest Biogeosci. For. 11, 396–405 (2018).
Google Scholar
Assefa, A., Tibebu, A., Bihon, A., Dagnachew, A. & Muktar, Y. Ecological niche modeling predicting the potential distribution of African horse sickness virus from 2020 to 2060. Sci. Rep. 12, 1748 (2022).
Google Scholar
Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).
Google Scholar
Wani, I. A. et al. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205 (2022).
Google Scholar
Boulanger-Lapointe, N. et al. Herbivore species coexistence in changing rangeland ecosystems: First high resolution national open-source and open-access ensemble models for Iceland. Sci. Total Environ. 845, 157140 (2022).
Google Scholar
Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2020).
Google Scholar
Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338 (2010).
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
Xiao-Ge, X. et al. Introduction of BCC models and its participation in CMIP6. Clim. Change Res. 5, 533–539 (2019).
Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).
Google Scholar
Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).
Google Scholar
Assefa, A., Tibebu, A., Bihon, A. & Yimana, M. Global ecological niche modelling of current and future distribution of peste des petits ruminants virus (PPRv) with an ensemble modelling algorithm. Transbound Emerg. Dis. 68, 3601–3610 (2021).
Google Scholar
Jori, F. & Bastos, A. D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 6, 296–310 (2009).
Google Scholar
Teklue, T., Sun, Y., Abid, M., Luo, Y. & Qiu, H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg. Dis. 67, 529–542 (2020).
Google Scholar
Arias, M. et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35 (2017).
Google Scholar
Chenais, E. et al. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manag. 5, 1–10 (2019).
Google Scholar
Quembo, C. J., Jori, F., Vosloo, W. & Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg. Dis. 65, 420–431 (2018).
Google Scholar
Torres, J. R. et al. Chikungunya fever: Atypical and lethal cases in the Western hemisphere: A Venezuelan experience. IDCases 2, 6–10 (2015).
Google Scholar
Nuanualsuwan, S. et al. Persistence of African swine fever virus on porous and non-porous fomites at environmental temperatures. Porc. Health Manag. 8, 34 (2022).
Google Scholar
Davies, K. et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg. Dis. 64, 425–431 (2017).
Google Scholar
Carlson, J. et al. Stability of African swine fever virus in soil and options to mitigate the potential transmission risk. Pathogens 9, 977 (2020).
Google Scholar
Salari, L. S., Vatandoost, H., Telmadarraiy, Z., Entezar, M. R. & Kia, E. Seasonal activity of ticks and their importance in tick-borne infectious diseases in West Azerbaijan, Iran. J. Arthropod. Borne Dis. 2, 28–34 (2008).
Vial, L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite 16, 191–202 (2009).
Google Scholar
Jian, L. et al. WANG potential adaptability of soft tick vectors of African swine fever to China. Chin. J. Vect. Biol. Control 21, 317–320 (2010).
Cwynar, P., Stojkov, J. & Wlazlak, K. African swine fever status in Europe. Viruses 11, 310 (2019).
Google Scholar
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69 (2009).
Google Scholar
Source: Ecology - nature.com