in

Drought resistance enhanced by tree species diversity in global forests

  • Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834 (2010).

    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    Article 

    Google Scholar 

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article 

    Google Scholar 

  • Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Article 

    Google Scholar 

  • Morin, X. et al. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics. Ecol. Lett. 17, 1526–1535 (2014).

    Article 

    Google Scholar 

  • Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574 (2015).

    Article 

    Google Scholar 

  • De Boeck, H. J. et al. Patterns and drivers of biodiversity–stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).

    Article 

    Google Scholar 

  • Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42–49 (2020).

    Article 

    Google Scholar 

  • O’Brien, M. J. et al. Resistance of tropical seedlings to drought is mediated by neighbourhood diversity. Nat. Ecol. Evol. 1, 1643–1648 (2017).

    Article 

    Google Scholar 

  • Gazol, A. & Camarero, J. J. Functional diversity enhances silver fir growth resilience to an extreme drought. J. Ecol. 104, 1063–1075 (2016).

    Article 

    Google Scholar 

  • Pretzsch, H., Schütze, G. & Uhl, E. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 15, 483–495 (2013).

    Article 

    Google Scholar 

  • Grossiord, C. et al. Tree diversity does not always improve resistance of forest ecosystems to drought. P. Natl Acad. Sci. USA 111, 14812–14815 (2014).

    Article 

    Google Scholar 

  • Grossiord, C. et al. Does drought influence the relationship between biodiversity and ecosystem functioning in boreal forests. Ecosystems 17, 394–404 (2014).

    Article 

    Google Scholar 

  • Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. P. Natl Acad. Sci. USA 100, 12765 (2003).

    Article 

    Google Scholar 

  • Lloret, F. et al. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests. Ecology 88, 2270–2279 (2007).

    Article 

    Google Scholar 

  • He, Q. & Bertness, M. D. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 95, 1437–1443 (2014).

    Article 

    Google Scholar 

  • Hafner, B. D. et al. Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment. Tree Physiol. 37, 950–960 (2017).

    Article 

    Google Scholar 

  • Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. For. Rep. 2, 45–61 (2016).

    Article 

    Google Scholar 

  • Vitali, V., Forrester, D. I. & Bauhus, J. Know your neighbours: drought response of Norway spruce, silver fir and Douglas fir in mixed forests depends on species identity and diversity of tree neighbourhoods. Ecosystems 21, 1215–1229 (2018).

    Article 

    Google Scholar 

  • The State of the World’s Forests 2020: Forests, Biodiversity and People (FAO and UNEP, 2020).

  • Zhang, J., Fu, B., Stafford-Smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01332-9 (2020).

  • Schulze, K., Malek, Ž. & Verburg, P. H. Towards better mapping of forest management patterns: a global allocation approach. For. Ecol. Manage. 432, 776–785 (2019).

    Article 

    Google Scholar 

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    Article 

    Google Scholar 

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article 

    Google Scholar 

  • Blackman, C. et al. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. N. Phytol. 188, 1113–1123 (2010).

    Article 

    Google Scholar 

  • Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 

    Google Scholar 

  • Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. P. Natl Acad. Sci. USA 116, 587–592 (2019).

    Article 

    Google Scholar 

  • Tomppo, E. et al. National Forest Inventories: Pathways for Common Reporting (Springer, 2010).

  • Chirici, G. et al. National Forest Inventories: Contributions to Forest Biodiversity Assessments (Springer, 2011).

  • Magnussen, S., Smith, B. & Uribe, S. National Forest inventories in North America for monitoring forest tree species diversity. Plant Biosyst. 141, 113–122 (2007).

    Article 

    Google Scholar 

  • Lesiv, M. et al. Global forest management data for 2015 at a 100 m resolution. Sci. Data 9, 199 (2022).

    Article 

    Google Scholar 

  • Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A. Multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696–1718 (2010).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850 (2013).

    Article 

    Google Scholar 

  • Forest Resources Assessment 2015 (FAO, 2015).

  • Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).

    Article 

    Google Scholar 

  • Didan, K. & Brreto, A. NASA MEaSUREs Vegetation Index and Phenology (VIP) Phenology EVI2 Yearly Global 0.05Deg CMG, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MEaSUREs/VIP/VIPPHEN_EVI2.004 (2016).

  • Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • Kline, T. J. B. Sample issues, methodological implications, and best practices. Can. J. Behav. Sci. 49, 71–77 (2017).

    Article 

    Google Scholar 

  • Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. B 368, 20120302 (2013).

    Article 

    Google Scholar 

  • Obiang, N. L. E. et al. Spatial pattern of central African rainforests can be predicted from average tree size. Oikos 119, 1643–1653 (2010).

    Article 

    Google Scholar 

  • Plotkin, J. B. et al. Predicting species diversity in tropical forests. P. Natl Acad. Sci. USA 97, 10850–10854 (2000).

    Article 

    Google Scholar 

  • Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).

    Article 

    Google Scholar 

  • Tukey, J. W. Exploratory Data Analysis (Addison-Wesley,1977).


  • Source: Ecology - nature.com

    Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean

    Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate