Li, F. et al. Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmos. Chem. Phys. 19, 12545–12567 (2019).
Google Scholar
Ward, D. S. et al. The changing radiative forcing of fires: Global model estimates for past, present and future. Atmos. Chem. Phys. 12, 10857–10886 (2012).
Google Scholar
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
McCarty, J. L. et al. Reviews and syntheses: Arctic fire regimes and emissions in the 21st century. Biogeosciences 18, 5053–5083 (2021).
Google Scholar
Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H. & Schaepman-Strub, G. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 6, eaax3308 (2020).
Google Scholar
Mahowald, N. et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochem. Cy. https://doi.org/10.1029/2008gb003240 (2008).
Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. USA 116, 16216–16221 (2019).
Google Scholar
Andreae, M. O. Emission of trace gases and aerosols from biomass burning—an updated assessment. Atmos. Chem. Phys. 19, 8523–8546 (2019).
Google Scholar
Guieu, C., Bonnet, S., Wagener, T. & Loÿe-Pilot, M.-D. Biomass burning as a source of dissolved iron to the open ocean? Geophys. Res. Lett. https://doi.org/10.1029/2005gl022962 (2005).
Hamilton, D. S. et al. Improved methodologies for Earth system modelling of atmospheric soluble iron and observation comparisons using the Mechanism of Intermediate complexity for Modelling Iron (MIMI v1.0). Geosci. Model Dev. 12, 3835–3862 (2019).
Google Scholar
Kharol, S. K. et al. Dry deposition of reactive nitrogen from satellite observations of ammonia and nitrogen dioxide over North America. Geophys. Res. Lett. 45, 1157–1166 (2018).
Google Scholar
Wentworth, G. R. et al. Ammonia in the summertime Arctic marine boundary layer: Sources, sinks, and implications. Atmos. Chem. Phys. 16, 1937–1953 (2016).
Google Scholar
Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
Google Scholar
Mahowald, N. M. et al. Aerosol deposition impacts on land and ocean carbon cycles. Curr. Clim. Change Rep. 3, 16–31 (2017).
Google Scholar
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).
Google Scholar
Evangeliou, N. et al. Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC, and BrC emissions. Atmos. Chem. Phys. 19, 1393–1411 (2019).
Google Scholar
Hamilton, D. S. et al. Earth, wind, fire, and pollution: Aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 14, 303–330 (2022).
Google Scholar
Soja, A. J., Shugart, H. H., Sukhinin, A., Conard, S. & Stackhouse, P. W. Satellite-derived mean fire return intervals as indicators of change in Siberia (1995–2002). Mitig. Adapt. Strateg. Glob. Chang. 11, 75–96 (2006).
Google Scholar
Ito, A. Mega fire emissions in Siberia: Potential supply of bioavailable iron from forests to the ocean. Biogeosciences 8, 1679–1697 (2011).
Google Scholar
Myriokefalitakis, S., Gröger, M., Hieronymus, J. & Döscher, R. An explicit estimate of the atmospheric nutrient impact on global oceanic productivity. Ocean Sci. 16, 1183–1205 (2020).
Google Scholar
Harrison, W. G. & Cota, G. F. Primary production in polar waters: Relation to nutrient availability. Polar Res. 10, 87–104 (1991).
Google Scholar
Tremblay, J.-É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).
Google Scholar
Ardyna, M., Gosselin, M., Michel, C., Poulin, M. & Tremblay, J.-É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions. Mar. Ecol. Prog. Ser. 442, 37–57 (2011).
Google Scholar
Rainville, L. & Woodgate, R. A. Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett. 36, L23604 (2009).
Google Scholar
Ardyna, M. et al. Recent Arctic Ocean sea-ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).
Google Scholar
Baumann, T. M. et al. On the seasonal cycles observed at the continental slope of the Eastern Eurasian Basin of the Arctic Ocean. J. Phys. Oceanogr. 48, 1451–1470 (2018).
Google Scholar
Bauch, D. & Cherniavskaia, E. Water mass classification on a highly variable Arctic shelf region: Origin of Laptev sea water masses and implications for the nutrient budget. J. Geophys. Res. Oceans 123, 1896–1906 (2018).
Google Scholar
Pnyushkov, A. V. et al. Heat, salt, and volume transports in the eastern Eurasian Basin of the Arctic Ocean from 2 years of mooring observations. Ocean Sci. 14, 1349–1371 (2018).
Google Scholar
Hölemann, J. A. et al. The impact of land-fast ice on the distribution of terrestrial dissolved organic matter in the Siberian Arctic shelf seas. Biogeosci. Discuss 2021, 1–30 (2021).
Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).
Google Scholar
Lutsch, E. et al. Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires. J. Geophys. Res. Atmos. 124, 8178–8202 (2019).
Google Scholar
Zhang, J., Li, D., Bian, J. & Bai, Z. Deep stratospheric intrusion and Russian wildfire induce enhanced tropospheric ozone pollution over the northern Tibetan Plateau. Atmos. Res. 259, 105662 (2021).
Google Scholar
Hurrell, J. W. et al. The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc. 94, 1339–1360 (2013).
Google Scholar
Clark, S. K., Ward, D. S. & Mahowald, N. M. The sensitivity of global climate to the episodicity of fire aerosol emissions. J. Geophys. Res.: Atmos. 120, 11,589–511,607 (2015).
Google Scholar
Shi, J.-H. et al. Examination of causative link between a spring bloom and dry/wet deposition of Asian dust in the Yellow Sea, China. J. Geophys. Res. Atmos. https://doi.org/10.1029/2012JD017983 (2012).
Wiedinmyer, C. et al. The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geosci. Model Dev. 4, 625–641 (2011).
Google Scholar
Eckhardt, S. et al. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys. 15, 9413–9433 (2015).
Google Scholar
Hamilton, D. S. et al. Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the anthropocene. Glob. Biogeochem. Cycle 34, e2019GB006448 (2020).
Google Scholar
Kramer, S. J., Bisson, K. M. & Fischer, A. D. Observations of phytoplankton community composition in the Santa Barbara channel during the Thomas fire. J. Geophys. Res. Oceans 125, e2020JC016851 (2020).
Google Scholar
Kim, Y., Hatsushika, H., Muskett, R. R. & Yamazaki, K. Possible effect of boreal wildfire soot on Arctic sea ice and Alaska glaciers. Atmos. Environ. 39, 3513–3520 (2005).
Google Scholar
Knapp, P. A. & Soulé, P. T. Spatio-temporal linkages between declining Arctic sea-ice extent and increasing wildfire activity in the Western United States. Forests 8, 313 (2017).
Google Scholar
Horvat, C. et al. The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Sci. Adv. https://doi.org/10.1126/sciadv.1601191 (2017).
Ardyna, M. et al. Under-ice phytoplankton blooms: Shedding light on the “invisible” part of arctic primary production. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.608032 (2020).
Altieri, K. E., Fawcett, S. E. & Hastings, M. G. Reactive nitrogen cycling in the atmosphere and ocean. Annu. Rev. Earth Planet. Sci. https://doi.org/10.1146/annurev-earth-083120-052147 (2021).
Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017).
Google Scholar
Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA 117, 20438–20446 (2020).
Google Scholar
Schmale, J. et al. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmos. Chem. Phys. 22, 3067–3096 (2022).
Google Scholar
Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202 (2020).
Google Scholar
Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 10, 892–903 (2020).
Google Scholar
Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).
Google Scholar
Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).
Google Scholar
Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: The experience of the Ocean-colour Climate Change Initiative (OC-CCI). Sensors 19, 4285 (2019).
Google Scholar
Gordon, H. R. & Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 33, 443–452 (1994).
Google Scholar
Werdell, P. J. & Bailey, S. W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 98, 122–140 (2005).
Google Scholar
Hu, C., Lee, Z. & Franz, B. Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Oceans https://doi.org/10.1029/2011JC007395 (2012).
Tilmes, S. et al. Description and evaluation of tropospheric chemistry and aerosols in the Community Earth System Model (CESM1.2). Geosci. Model Dev. 8, 1395–1426 (2015).
Google Scholar
Bernstein, D. et al. Short-term impacts of 2017 western North American wildfires on meteorology, the atmosphere’s energy budget, and premature mortality. Environ. Res. Lett. 16, 064065 (2021).
Google Scholar
Liu, X. et al. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev. 9, 505–522 (2016).
Google Scholar
Suarez, M. J. et al. The GEOS-5 Data Assimilation System – Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. No. NASA/TM-2008-104606-VOL-27 (2008).
Janssens-Maenhout, G. et al. HTAP_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmos. Chem. Phys. 15, 11411–11432 (2015).
Google Scholar
Dentener, F. et al. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys. 6, 4321–4344 (2006).
Google Scholar
Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).
Google Scholar
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).
Google Scholar
Carter, T. S. et al. How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys. 20, 2073–2097 (2020).
Google Scholar
Pan, X. et al. Six global biomass burning emission datasets: Intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 20, 969–994 (2020).
Google Scholar
Reddington, C. L. et al. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations. Atmos. Chem. Phys. 16, 11083–11106 (2016).
Google Scholar
Kiely, L. et al. New estimate of particulate emissions from Indonesian peat fires in 2015. Atmos. Chem. Phys. 19, 11105–11121 (2019).
Google Scholar
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L. & Justice, C. O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 217, 72–85 (2018).
Arrigo, K. R. et al. Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep Sea Res. Pt. 2 105, 1–16 (2014).
Google Scholar
Geider, R. J., Maclntyre, H. L. & Kana, T. M. A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol. Oceanogr. 43, 679–694 (1998).
Google Scholar
Liefer, J. D., Garg, A., Campbell, D. A., Irwin, A. J. & Finkel, Z. V. Nitrogen starvation induces distinct photosynthetic responses and recovery dynamics in diatoms and prasinophytes. PLoS One 13, e0195705 (2018).
Google Scholar
Source: Ecology - nature.com