in

Climate change increases global risk to urban forests

  • Liu, Z., He, C., Zhou, Y. & Wu, J. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landsc. Ecol. 29, 763–771 (2014).

    Google Scholar 

  • The World’s Cities in 2018: Data Booklet (UN, 2018).

  • Miller, R. W., Hauer, R. J. & Werner, L. P. Urban Forestry: Planning and Managing Urban Greenspaces 3rd edn (Waveland Press, 2015).

  • Escobedo, F. J., Kroeger, T. & Wagner, J. E. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ. Pollut. 159, 2078–2087 (2011).

    CAS 

    Google Scholar 

  • Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29 (2019).

    Google Scholar 

  • Petri, A. C., Koeser, A. K., Lovell, S. T. & Ingram, D. How green are trees?—using life cycle assessment methods to assess net environmental benefits. J. Environ. Hortic. 34, 101–110 (2016).

    CAS 

    Google Scholar 

  • Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS 

    Google Scholar 

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).

    Google Scholar 

  • Nowak, D. J. & Greenfield, E. J. Declining urban and community tree cover in the United States. Urban For. Urban Green. 32, 32–55 (2018).

    Google Scholar 

  • Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    CAS 

    Google Scholar 

  • Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Google Scholar 

  • Yan, P. & Yang, J. Performances of urban tree species under disturbances in 120 cities in China. Forests 9, 50 (2018).

    Google Scholar 

  • Hilbert, D., Roman, L., Koeser, A. K., Vogt, J. & Van Doorn, N. S. Urban tree mortality: a literature review. Arboric. Urban For. 45, 167–200 (2019).

    Google Scholar 

  • Young, R. F. & McPherson, E. G. Governing metropolitan green infrastructure in the United States. Landsc. Urban Plan. 109, 67–75 (2013).

    Google Scholar 

  • Esperon-Rodriguez, M. et al. Assessing climate risk to support urban forests in a changing climate. Plants People Planet https://doi.org/10.1002/ppp3.10240 (2022).

  • Esperon-Rodriguez, M. et al. Assessing the vulnerability of Australia’s urban forests to climate extremes. Plants People Planet 1, 387–397 (2019).

  • Gallagher, R. V., Allen, S. & Wright, I. J. Safety margins and adaptive capacity of vegetation to climate change. Sci. Rep. 9, 8241 (2019).

    Google Scholar 

  • Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS 

    Google Scholar 

  • Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

  • Richard, B. et al. The climatic debt is growing in the understory of temperate forests: stand characteristics matter. Global Ecol. Biogeogr. 30, 1474–1487 (2021).

  • IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press, 2001).

  • Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    CAS 

    Google Scholar 

  • Foden, W. B. et al. Climate change vulnerability assessment of species. WIREs Clim. Change 10, e551 (2019).

    Google Scholar 

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Google Scholar 

  • Reisinger, A. et al. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions (IPCC, 2020).

  • Chen, C. et al. University of Notre Dame Global Adaptation Index: Country Index Technical Report (ND-GAIN, 2015).

  • McPherson, E. G., Berry, A. M. & van Doorn, N. S. Performance testing to identify climate-ready trees. Urban For. Urban Green. 29, 28–39 (2018).

    Google Scholar 

  • Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2 https://doi.org/10.17161/bi.v2i0.4 (2005).

  • Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).

    Google Scholar 

  • Ordóñez, C. & Duinker, P. Assessing the vulnerability of urban forests to climate change. Environ. Rev. 22, 311–321 (2014).

    Google Scholar 

  • Gallagher, R. V., Beaumont, L. J., Hughes, L. & Leishman, M. R. Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia. J. Ecol. 98, 790–799 (2010).

    Google Scholar 

  • Smith, I. A., Dearborn, V. K. & Hutyra, L. R. Live fast, die young: accelerated growth, mortality, and turnover in street trees. PLoS ONE 14, e0215846 (2019).

    Google Scholar 

  • Hirabayashi, Y., Kanae, S., Emori, S., Oki, T. & Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J. 53, 754–772 (2008).

    Google Scholar 

  • Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).

    Google Scholar 

  • Ballinas, M. & Barradas, V. L. Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico City. Urban For. Urban Green. 20, 152–159 (2016).

    Google Scholar 

  • Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617 (2018).

    Google Scholar 

  • Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    CAS 

    Google Scholar 

  • Manoli, G. et al. Magnitude of urban heat islands largely explained by climate and population. Nature 573, 55–60 (2019).

    CAS 

    Google Scholar 

  • Kim, D.-H., Doyle, M. R., Sung, S. & Amasino, R. M. Vernalization: winter and the timing of flowering in plants. Annu. Rev. Cell Dev. Biol. 25, 277–299 (2009).

    CAS 

    Google Scholar 

  • Kummu, M. & Varis, O. The world by latitudes: a global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 31, 495–507 (2011).

    Google Scholar 

  • Vogt, J. et al. Citree: a database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 157, 14–25 (2017).

    Google Scholar 

  • Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green. 62, 127157 (2021).

    Google Scholar 

  • Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, 126771 (2020).

    Google Scholar 

  • Hirons, A. D. et al. Using botanic gardens and arboreta to help identify urban trees for the future. Plants People Planet 3, 182–193 (2021).

    Google Scholar 

  • Watkins, H., Hirons, A., Sjöman, H., Cameron, R. & Hitchmough, J. D. Can trait-based schemes be used to select species in urban forestry? Front. Sustain. Cities 3 https://doi.org/10.3389/frsc.2021.654618 (2021).

  • Populated Places (Natural Earth, accessed 2018); http://www.naturalearthdata.com/downloads/

  • Ossola, A. et al. The Global Urban Tree Inventory: a database of the diverse tree flora that inhabits the world’s cities. Glob. Ecol. Biogeogr. 29, 1907–1914 (2020).

    Google Scholar 

  • Sabatini, F., Lenoir, J. & Bruelheide, H. sPlotOpen—An Environmentally-Balanced, Open-Access, Global Dataset of Vegetation Plots (iDiv, 2021); https://doi.org/10.25829/idiv.3474-40-3292

  • Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Global Ecol. Biogeogr. 30, 1740–1764 (2021).

  • Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Taxonstand: Taxonomic standardization of plant species names. R package version 2.4 https://cran.r-project.org/web/packages/Taxonstand/Taxonstand.pdf (2021).

  • Kelso, N. & Patterson, T. World Urban Areas, LandScan, 1:10 Million (2012) (North American Cartographic Information Society, 2012).

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Google Scholar 

  • O’Donnell, M. S. & Ignizio, D. A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States (USGS, 2012).

  • Field, C. et al. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).

  • Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

    CAS 

    Google Scholar 

  • Zhao, L. et al. Global multi-model projections of local urban climates. Nat. Clim. Change 11, 152–157 (2021).

    Google Scholar 

  • Huang, K., Li, X., Liu, X. & Seto, K. C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 14, 114037 (2019).

    Google Scholar 

  • Alavipanah, S., Wegmann, M., Qureshi, S., Weng, Q. & Koellner, T. The role of vegetation in mitigating urban land surface temperatures: a case study of Munich, Germany during the warm season. Sustainability 7, 4689–4706 (2015).

    Google Scholar 

  • Corburn, J. Cities, climate change and urban heat island mitigation: localising global environmental science. Urban Stud. 46, 413–427 (2009).

    Google Scholar 

  • Baston, D., ISciences, L.L., Baston, M.D. Package ‘exactextractr’. terra. R package version 0.8.2 (2022).

  • Hijmans, R. J. et al. raster: Geographic data analysis and modeling. R package version 2.3-33 http://cran.r-project.org/web/packages/raster/index.html (2016).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  • Bivand, R. et al. maptools: Tools for handling spatial objects. R package version 08, 23 https://cran.r-project.org/web/packages/maptools/ (2013).


  • Source: Ecology - nature.com

    Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean

    Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate