in

Ecological and evolutionary dynamics of multi-strain RNA viruses

  • Gupta, S. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280, 912–915 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kucharski, A. J., Andreasen, V. & Gog, J. R. Capturing the dynamics of pathogens with many strains. J. Math. Biol. 72, 1–24 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Lourenço, J. & Recker, M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLoS Comput. Biol. 9, e1003308 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gog, J. R. & Grenfell, B. T. Dynamics and selection of many-strain pathogens. Proc. Natl Acad. Sci. USA 99, 17209–17214 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Recker, M., Pybus, O. G., Nee, S. & Gupta, S. The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types. Proc. Natl Acad. Sci. USA 104, 7711–7716 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jang, Y., Seo, T. & Seo, S. H. Higher virulence of swine H1N2 influenza viruses containing avian-origin HA and 2009 pandemic PA and NP in pigs and mice. Arch. Virol. 165, 1141–1150 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salvesen, H. A. & Whitelaw, C. B. A. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manage. 7, 23 (2021).

    Article 

    Google Scholar 

  • Ma, W., Kahn, R. E. & Richt, J. A. The pig as a mixing vessel for influenza viruses: human and veterinary implications. J. Mol. Genet. Med. 03, 158–166 (2009).

    CAS 
    Article 

    Google Scholar 

  • Mancera Gracia, J. C., Pearce, D. S., Masic, A. & Balasch, M. Influenza A virus in swine: epidemiology, challenges and vaccination strategies. Front. Vet. Sci. 7, 647 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Regenmortel, M. H. V. Virus species and virus identification: past and current controversies. Infect. Genet. Evol. 7, 133–144 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Lazebnik, T. & Bunimovich-Mendrazitsky, S. Generic approach for mathematical model of multi-strain pandemics. PLoS ONE 17, e0260683 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wikramaratna, P. S., Sandeman, M., Recker, M. & Gupta, S. The antigenic evolution of influenza: drift or thrift? Phil. Trans. R. Soc. B 368, 20120200 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pitzer, V. E. et al. Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proc. Natl Acad. Sci. USA 108, 19353–19358 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grenfell, B. T. et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303, 327–332 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Paploski, I. A. D. et al. Temporal dynamics of co-circulating lineages of porcine reproductive and respiratory syndrome virus. Front. Microbiol. 10, 2486 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ferguson, N. M., Galvani, A. P. & Bush, R. M. Ecological and immunological determinants of influenza evolution. Nature 422, 428–433 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bishop, S. C., Axford, R. F. E., Nicholas, F. W. & Owen, J. B. Breeding for Disease Resistance in Farm Animals 3rd edn (CABI, 2010); https://doi.org/10.1079/9781845935559.0000

  • Domingo, E. & Schuster, P. in Quasispecies: From Theory to Experimental Systems (eds Domingo, E. & Schuster, P.) 1–22 (Springer, 2015); https://doi.org/10.1007/82_2015_453

  • Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, N., Trible, B. R., Kerrigan, M. A., Tian, K. & Rowland, R. R. R. ORF5 of porcine reproductive and respiratory syndrome virus (PRRSV) is a target of diversifying selection as infection progresses from acute infection to virus rebound. Infect. Genet. Evol. 40, 167–175 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carpenter, S. Identification of Genetic Mutations that Confer Escape from Innate or Adaptive Host Immune Responses During PRRSV Infection In Vivo NPB #12-173 (National Pork Board, 2014).

  • Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dou, D., Revol, R., Östbye, H., Wang, H. & Daniels, R. Influenza A virus cell entry, replication, virion assembly and movement. Front. Immunol. 9, 1581 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hamilton, B. S., Whittaker, G. R. & Daniel, S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4, 1144–1168 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, K. et al. Virus–host interactions in foot-and-mouth disease virus infection. Front. Immunol. 12, 571509 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Millet, J. K., Jaimes, J. A. & Whittaker, G. R. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa057 (2020).

  • Wang, G., Wang, Y., Shang, Y., Zhang, Z. & Liu, X. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol. J. 12, 9 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sokol, C. L. & Luster, A. D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 7, a016303 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Theofilopoulos, A., Baccala, R., Beutler, B. & Kono, D. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mueller, S. N. & Rouse, B. T. in Clinical Immunology (eds Rich, R. R. et al.) 421–431 (Elsevier, 2008); https://doi.org/10.1016/B978-0-323-04404-2.10027-2

  • Chen, X. et al. Host immune response to influenza A virus infection. Front. Immunol. 9, 320 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Agrawal, B. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 10, 2631 (2019)i

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharma, S. & Thomas, P. G. The two faces of heterologous immunity: protection or immunopathology. J. Leukoc. Biol. 95, 405–416 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Spackman, E. & Sitaras, I. Animal Influenza Virus (Springer, 2020).

  • Anderson, C. S., McCall, P. R., Stern, H. A., Yang, H. & Topham, D. J. Antigenic cartography of H1N1 influenza viruses using sequence-based antigenic distance calculation. BMC Bioinformatics 19, 51 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cai, Z., Zhang, T. & Wan, X.-F. Concepts and applications for influenza antigenic cartography. Influenza Other Respi. Viruses 5, 204–207 (2011).

    PubMed Central 

    Google Scholar 

  • Wang, P. et al. Predicting influenza antigenicity by matrix completion with antigen and antiserum similarity. Front. Microbiol. 9, 2500 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hirst, G. K. Studies of antigenic differences among strains of influenza by means of red cell agglutination. J. Exp. Med. 78, 407–423 (1943).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kendra, J. A., Tohma, K., Ford-Siltz, L. A., Lepore, C. J. & Parra, G. I. Antigenic cartography reveals complexities of genetic determinants that lead to antigenic differences among pandemic GII.4 noroviruses. Proc. Natl Acad. Sci. USA 118, e2015874118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bell, S. M., Katzelnick, L. & Bedford, T. Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics. Elife 8, e42496 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yao, Y. et al. Predicting influenza antigenicity from Hemagglutintin sequence data based on a joint random forest method. Sci. Rep. 7, 1545 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zeller, M. A. et al. Machine learning prediction and experimental validation of antigenic drift in h3 influenza A viruses in swine. mSphere 6, e00920–e00920 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wikramaratna, P. S. et al. Five challenges in modelling interacting strain dynamics. Epidemics 10, 31–34 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Elliott, P. et al. Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant. Science 374, eabl9551 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bianco, S., Shaw, L. B. & Schwartz, I. B. Epidemics with multistrain interactions: the interplay between cross immunity and antibody-dependent enhancement. Chaos 19, 043123 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nickbakhsh, S. et al. Virus–virus interactions impact the population dynamics of influenza and the common cold. Proc. Natl Acad. Sci. USA 116, 27142–27150 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Poon, A. F. Y. et al. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS ONE 8, e78122 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lemey, P. et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10, e1003932 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gill, M. S. et al. Improving bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 30, 713–724 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kingman, J. F. C. On the genealogy of large populations. J. Appl. Probab. 19, 27–43 (1982).

    Article 

    Google Scholar 

  • Griffiths, R. C. & Tavare, S. Ancestral inference in population genetics. Stat. Sci. 9, 307–319 (1994).

    Article 

    Google Scholar 

  • Magee, D., Suchard, M. A. & Scotch, M. Bayesian phylogeography of influenza A/H3N2 for the 2014–15 season in the United States using three frameworks of ancestral state reconstruction. PLoS Comput. Biol. 13, e1005389 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Müller, N. F., Rasmussen, D. & Stadler, T. MASCOT: parameter and state inference under the marginal structured coalescent approximation. Bioinformatics 34, 3843–3848 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics with migration: a computational framework to quantify population structure from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yan, L., Neher, R. A. & Shraiman, B. I. Phylodynamic theory of persistence, extinction and speciation of rapidly adapting pathogens. Elife 8, e44205 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Paploski, I. A. D. et al. Phylogenetic structure and sequential dominance of sub-lineages of PRRSV type-2 lineage 1 in the United States. Vaccines 9, 608 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kistler, K. E. & Bedford, T. Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E. Elife 10, e64509 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bedford, T. et al. Integrating influenza antigenic dynamics with molecular evolution. Elife 2014, e01914 (2014).

    Article 

    Google Scholar 

  • de Carvalho Ferreira, H. C. et al. An integrative analysis of foot-and-mouth disease virus carriers in Vietnam achieved through targeted surveillance and molecular epidemiology. Transbound. Emerg. Dis. 64, 547–563 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Huang, J. H. et al. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2008–2010. Am. J. Trop. Med. Hyg. 87, 349–358 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Höckerstedt, L. M., Siren, J. P. & Laine, A.-L. Effect of spatial connectivity on host resistance in a highly fragmented natural pathosystem. J. Evol. Biol. 31, 844–852 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Papaïx, J., Burdon, J. J., Lannou, C. & Thrall, P. H. Evolution of pathogen specialisation in a host metapopulation: joint effects of host and pathogen dispersal. PLoS Comput. Biol. 10, e1003633 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tack, A. J. M., Hakala, J., Petäjä, T., Kulmala, M. & Laine, A.-L. Genotype and spatial structure shape pathogen dispersal and disease dynamics at small spatial scales. Ecology 95, 703–714 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Smith, D. J. et al. Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Korneliussen, T. S., Moltke, I., Albrechtsen, A. & Nielsen, R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics 14, 289 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wargo, A. R. & Kurath, G. Viral fitness: definitions, measurement, and current insights. Curr. Opin. Virol. 2, 538–545 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dayarian, A. & Shraiman, B. I. How to infer relative fitness from a sample of genomic sequences. Genetics 197, 913–923 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Neher, R. A., Russell, C. A. & Shraiman, B. I. Predicting evolution from the shape of genealogical trees. Elife 3, e03568 (2014).

    PubMed Central 
    Article 

    Google Scholar 

  • Doumayrou, J., Thébaud, G., Vuillaume, F., Peterschmitt, M. & Urbino, C. Mapping genetic determinants of viral traits with FST and quantitative trait locus (QTL) approaches. Virology 484, 346–353 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nagylaki, T. Fixation indices in subdivided populations. Genetics 148, 1325–1332 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, Z. & Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 17, 32–43 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tubiana, L., Božič, A. L., Micheletti, C. & Podgornik, R. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys. J. 108, 194–202 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jordan-Paiz, A., Franco, S. & Martínez, M. A. Impact of synonymous genome recoding on the HIV life cycle. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.606087 (2021).

  • Cuevas, J. M., Domingo-Calap, P. & Sanjuán, R. The fitness effects of synonymous mutations in DNA and RNA viruses. Mol. Biol. Evol. 29, 17–20 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Su, Y. C. F. et al. Phylodynamics of H1N1/2009 influenza reveals the transition from host adaptation to immune-driven selection. Nat. Commun. 6, 7952 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kryazhimskiy, S., Dieckmann, U., Levin, S. A. & Dushoff, J. On state-space reduction in multi-strain pathogen models, with an application to antigenic drift in influenza A. PLoS Comput. Biol. 3, e159 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Peralta, R., Vargas-De-León, C., Cabrera, A. & Miramontes, P. Dynamics of high-risk nonvaccine human papillomavirus types after actual vaccination scheme. Comput. Math. Methods Med. 2014, 542923 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ranjeva, S. L. et al. Recurring infection with ecologically distinct HPV types can explain high prevalence and diversity. Proc. Natl Acad. Sci. USA 114, 13573–13578 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aguiar, M., Stollenwerk, N. & Kooi, B. W. The stochastic multi-strain dengue model: analysis of the dynamics. AIP Conf. Proc. 1389, 1224 (2011).

  • Blower, S. M., Aschenbach, A. N., Gershengorn, H. B. & Kahn, J. O. Predicting the unpredictable: transmission of drug-resistant HIV. Nat. Med. 7, 1016–1020 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sharomi, O. & Gumel, A. B. Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn. 2, 323–345 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Roche, B., Drake, J. M. & Rohani, P. An agent-based model to study the epidemiological and evolutionary dynamics of influenza viruses. BMC Bioinformatics 12, 87 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sofonea, M. T., Alizon, S. & Michalakis, Y. From within-host interactions to epidemiological competition: a general model for multiple infections. Phil. Trans. R. Soc. B 370, 20140303 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • VanderWaal, K. L. & Ezenwa, V. O. Heterogeneity in pathogen transmission: mechanisms and methodology. Funct. Ecol. 30, 1606–1622 (2016).

    Article 

    Google Scholar 

  • Cobey, S. & Pascual, M. Consequences of host heterogeneity, epitope immunodominance, and immune breadth for strain competition. J. Theor. Biol. 270, 80–87 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Aguiar, M., Ballesteros, S., Kooi, B. W. & Stollenwerk, N. The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: complex dynamics and its implications for data analysis. J. Theor. Biol. 289, 181–196 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Breban, R., Drake, J. M. & Rohani, P. A general multi-strain model with environmental transmission: invasion conditions for the disease-free and endemic states. J. Theor. Biol. 264, 729–736 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Kamo, M. & Sasaki, A. The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D 165, 228–241 (2002).

  • Martcheva, M. A non-autonomous multi-strain SIS epidemic model. J. Biol. Dyn. 3, 235–251 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Pugliese, A. On the evolutionary coexistence of parasite strains. Math. Biosci. 177–178, 355–375 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Roche, B. & Rohani, P. Environmental transmission scrambles coexistence patterns of avian influenza viruses. Epidemics 2, 92–98 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Korobeinikov, A. & Dempsey, C. A continuous phenotype space model of RNA virus evolution within a host. Math. Biosci. Eng. 11, 919–927 (2014).

    Article 

    Google Scholar 

  • Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A. & Liu, W. M. Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gupta, S., Swinton, J. & Anderson, R. M. Theoretical studies of the effects of heterogeneity in the parasite population on the transmission dynamics of malaria. Proc. R. Soc. B 256, 231–238 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Koelle, K., Khatri, P., Kamradt, M. & Kepler, T. B. A two-tiered model for simulating the ecological and evolutionary dynamics of rapidly evolving viruses, with an application to influenza. J. R. Soc. Interface 7, 1257–1274 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lion, S. & Gandon, S. Spatial evolutionary epidemiology of spreading epidemics. Proc. R. Soc. B 283, 20161170 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, e1000536 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pilosof, S. et al. Competition for hosts modulates vast antigenic diversity to generate persistent strain structure in Plasmodium falciparum. PLoS Biol. 17, e3000336 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lipsitch, M., Colijn, C., Cohen, T., Hanage, W. P. & Fraser, C. No coexistence for free: neutral null models for multistrain pathogens. Epidemics 1, 2–13 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Read, J. M. & Keeling, M. J. Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B 270, 699–708 (2003).

    Article 

    Google Scholar 

  • Eshelman, C. M. et al. Unrestricted migration favours virulent pathogens in experimental metapopulations: evolutionary genetics of a rapacious life history. Phil. Trans. R. Soc. B 365, 2503–2513 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Adam, D. C. et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26, 1714–1719 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Makau, D. N. et al. Integrating animal movements with phylogeography to model the spread of PRRS virus in the US. Virus Evol. https://doi.org/10.1093/ve/veab060 (2021).

  • Kistler, K. E., Huddleston, J. & Bedford, T. Rapid and parallel adaptive mutations in spike S1 drive clade success in SARS-CoV-2. Cell Host Microbe 30, 545–555 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. & Roossinck, M. J. Genetic bottlenecks reduce population variation in an experimental RNA virus population. J. Virol. 78, 10582–10587 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCrone, J. T. et al. Stochastic processes constrain the within and between host evolution of influenza virus. Elife 7, e35962 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nelson, M. I. et al. Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog. 2, e125 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science 369, 582–587 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • da Silva Filipe, A. et al. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into Scotland. Nat. Microbiol. 6, 112–122 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tayoun, A. A. et al. Multiple early introductions of SARS-CoV-2 into a global travel hub in the Middle East. Sci. Rep. 10, 17720 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Obermeyer, F. et al. Analysis of 2.1 million SARS-CoV-2 genomes identifies mutations associated with transmissibility. Science 376, 1327–1332 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wikramaratna, P. S., Pybus, O. G. & Gupta, S. Contact between bird species of different lifespans can promote the emergence of highly pathogenic avian influenza strains. Proc. Natl Acad. Sci. USA 111, 10767–10772 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Volz, E. M., Koelle, K. & Bedford, T. Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).

    CAS 
    Article 

    Google Scholar 

  • Clay, P. A. & Rudolf, V. H. W. How parasite interaction strategies alter virulence evolution in multi‐parasite communities. Evolution 73, 2189–2203 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Bishop, S. C., Doeschl-Wilson, A. B. & Woolliams, J. A. Uses and implications of field disease data for livestock genomic and genetics studies. Front. Genet. 3, 114 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez‐Nevado, C., Lam, T. T. Y., Holmes, E. C. & Pagán, I. The impact of host genetic diversity on virus evolution and emergence. Ecol. Lett. 21, 253–263 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Schulte, R. D., Makus, C. & Schulenburg, H. Host–parasite coevolution favours parasite genetic diversity and horizontal gene transfer. J. Evol. Biol. 26, 1836–1840 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Duxbury, E. M. L. et al. Host–pathogen coevolution increases genetic variation in susceptibility to infection. Elife 8, e46440 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chabas, H. et al. Evolutionary emergence of infectious diseases in heterogeneous host populations. PLoS Biol. 16, e2006738 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ganusov, V. V., Bergstrom, C. T. & Antia, R. Within‐host population dynamics and the evolution of microparasites in a heterogeneous host population. Evolution 56, 213–223 (2002).

    PubMed 
    Article 

    Google Scholar 

  • González, R., Butković, A. & Elena, S. F. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus†. Virus Evol. 5, vez024 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Regoes, R. R., Nowak, M. A. & Bonhoeffer, S. Evolution of virulence in a heterogeneous host population. Evolution 54, 64–71 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yates, A., Antia, R. & Regoes, R. R. How do pathogen evolution and host heterogeneity interact in disease emergence? Proc. R. Soc. B 273, 3075–3083 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rochman, N. D. et al. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc. Natl Acad. Sci. USA 118, e2104241118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Volz, E. et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature 593, 266–269 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Gidari, A. et al. Cross-neutralization of SARS-CoV-2 B.1.1.7 and P.1 variants in vaccinated, convalescent and P.1 infected. J. Infect. 83, 467–472 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Changrob, S. et al. Cross-neutralization of emerging SARS-CoV-2 variants of concern by antibodies targeting distinct epitopes on spike. MBio https://doi.org/10.1128/mBio.02975-21 (2021).

  • Vidal, S. J. et al. Correlates of neutralization against SARS-CoV-2 variants of concern by early pandemic sera. J. Virol. 95, e0040421 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Muik, A. et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 371, 1152–1153 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bushman, M., Kahn, R., Taylor, B. P., Lipsitch, M. & Hanage, W. P. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 184, 6229–6242 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Koopman, J. S., Simon, C. P., Getz, W. M. & Salter, R. Modeling the population effects of escape mutations in SARS-CoV-2 to guide vaccination strategies. Epidemics 36, 100484 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ocean scientists measure sediment plume stirred up by deep-sea-mining vehicle

    Pervasive exposure of wild small mammals to legacy and currently used pesticide mixtures in arable landscapes