in

Impacts of climate change and human activities on different degraded grassland based on NDVI

  • Bi, X. et al. Response of grassland productivity to climate change and anthropogenic activities in arid regions of Central Asia. Peer J. 8, e9797–e9797 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 83, 303–313 (2017).

    Google Scholar 

  • Liu, Y. Y. et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecol. Indic. 106, 105504–105504 (2019).

    Google Scholar 

  • Zhang, Y. et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 563–564, 210–220 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, China. Ecol. Inf. 33, 32–44 (2016).

    CAS 

    Google Scholar 

  • He, C. Y., Tian, J., Gao, B. & Zhao, Y. Y. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ. Monit. Assess. 187(1), 4199 (2015).

    PubMed 

    Google Scholar 

  • Liu, Y. Y. et al. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Sci. Total Environ. 690, 27–39 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, L. L., Jiapaer, G., Bao, A. M., Guo, H. & Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 599–600, 967–980 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Chen, T. et al. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Sci. Total Environ. 653, 1311–1325 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gang, C. et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Sci. Total Environ. 645, 827–836 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, D. & Wang, H. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos. 118, 5216–5230 (2013).

    ADS 

    Google Scholar 

  • Yang, Y. et al. Comparative assessment of grassland degradation dynamics in response to climate variation and human activities in China, Mongolia, Pakistan and Uzbekistan from 2000 to 2013. J. Arid Environ. 135, 164–172 (2016).

    ADS 

    Google Scholar 

  • Li, C. X., Jong, R., Schmid, B., Wulf, H. & Michael, E. S. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecol. Indic. 119, 106641 (2020).

    Google Scholar 

  • Li, F., Chen, W., Zeng, Y., Zhao, Q. J. & Wu, B. F. Improving estimates of grassland fractional vegetation cover based on a pixel dichotomy model: A case study in Inner Mongolia, China. Remote Sens. 6, 4705–4722 (2014).

    ADS 

    Google Scholar 

  • Wang, J., Brown, D. G. & Chen, J. Q. Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian plateau. Landsc. Ecol. 28(4), 725–739 (2014).

    Google Scholar 

  • Han, D. M. et al. Evaluation of semiarid grassland degradation in north China from multiple perspectives. Ecol. Eng. 112, 41–50 (2018).

    Google Scholar 

  • Liu, H. X. et al. Response of vegetation productivity to climate change and human activities in the Shaanxi–Gansu–Ningxia region, China. J. Indian Soc. Remote Sens. 46(7), 1081–1092 (2018).

    Google Scholar 

  • Zheng, K. et al. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 660, 236–244 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yan, Y. C., Liu, X. P., Wen, Y. Y. & Ou, J. P. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 103, 542–553 (2019).

    Google Scholar 

  • Wang, H. et al. Impacts of climate change on net primary productivity in arid and semiarid regions of China. Chin. Geogra. Sci. 26, 35–47 (2016).

    CAS 

    Google Scholar 

  • Thomas, M. et al. Human land-use practices lead to global long-term increases in photosynthetic capacity. Remote Sens. 6(6), 5717–5731 (2014).

    Google Scholar 

  • Becerril-Pina, R., Mastachi-Loza, C. A., Gonzalez-Sosa, E., Diaz-Delgado, C. & Ba, K. M. Assessing desertification risk in the semi-arid highlands of central Mexico. J. Arid Environ. 120, 4–13 (2015).

    ADS 

    Google Scholar 

  • Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57(4), 535–554 (2004).

    ADS 

    Google Scholar 

  • Meng, M. et al. Vegetation change in response to climate factors and human activities on the Mongolian Plateau. Peer J. 7, e7735 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Burrell, A. L., Evans, J. P. & Liu, Y. Detecting dryland degradation using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens Environ. 197, 43–57 (2017).

    ADS 

    Google Scholar 

  • Gedefaw, M. G., Geli, H. M. E. & Abera, T. A. Assessment of rangeland degradation in New Mexico using time series segmentation and residual trend analysis (TSS-RESTREND). Remote Sens. 13(9), 1618–1618 (2021).

    ADS 

    Google Scholar 

  • Zhang, F. Changes of Grassland Net Primary Productivity in the Qinghai Tibet Plateau During the Past 34 Years and Analysis of Its Local Degradation Characteristics (Lanzhou University, 2021).

    Google Scholar 

  • Li, L. H. et al. Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecol. Evol. 8(11), 5949–5963 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Z. C. et al. Greening of the earth and its drivers. Nat. Clim. Change. 6, 791–795 (2016).

    ADS 
    CAS 

    Google Scholar 

  • Song, L. C., Ma, W. W., Li, G., Liu, S. N. & Lu, G. Effect of temperature changes on nitrogen mineralization in soils with different degradation gradients in Gahai Wetland. Acta Pratacul. Sin. 30(09), 27–37 (2021).

    Google Scholar 

  • Dai, L. C. et al. Effect of grazing management strategies on alpine grassland on the northeastern Qinghai-Tibet Plateau. Ecol. Eng. 173, 106418 (2021).

    Google Scholar 

  • Liu, Y. Y. et al. Evaluating the dynamics of grassland net primary productivity in response to climate change in China. Glob. Ecol. Conserv. 28, e01574 (2021).

    Google Scholar 

  • Bestelmeyer, B. T., Duniway, M. C., James, D. K., Burkett, L. M. & Havstad, K. M. A test of critical thresholds and their indicators in a desertification-prone ecosystem: More resilience than we thought. Ecol. Lett. 16, 339–345 (2013).

    PubMed 

    Google Scholar 

  • Kéfi, S. et al. Early warning signals of ecological transitions: Methods for spatial patterns. PLoS ONE 9(3), e92097 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. Z. et al. IKONOS image-based extraction of the distribution area of Stellera chamaejasme L. in Qilian County of Qinghai Province, China. Remote Sens. 8(2), 148 (2016).

    ADS 

    Google Scholar 

  • Liu, Y. Q. & Lu, C. H. Quantifying grass coverage trends to identify the hot plots of grassland degradation in the Tibetan Plateau during 2000–2019. Int. J. Environ. Res. Public Health. 18(2), 416 (2021).

    MathSciNet 
    PubMed Central 

    Google Scholar 

  • Kendall, M. G. Rank Correlation Methods (Griffin, 1948).

    MATH 

    Google Scholar 

  • Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    MathSciNet 
    MATH 

    Google Scholar 

  • Zhang, Z. M. & Lu, C. H. Clustering analysis of soybean production to understand its spatiotemporal dynamics in the North China Plain. Sustainability. 12(15), 6178 (2020).

    Google Scholar 

  • Pei, T. T. et al. The sensitivity of vegetation phenology to extreme climate indices in the Loess Plateau, China. Sustainability. 13(14), 7623–7623 (2021).

    Google Scholar 

  • Lu, B. B., Charlton, M., Harris, P. & Fotheringham, A. S. Geographically weighted regression with a non-Euclidean distance metric: A case study using hedonic house price data. Int. J. Geogr. Inf. Sci. 28(4), 660–681 (2014).

    Google Scholar 

  • Sun, L. Q., Zhang, F. H., Yang, S. W., Qiu, A. G. & Zhang, X. L. The method of selecting geographically and temporally weight regression variable based on stepwise regression. Sci. Surv. Mapp. 44(01), 73–78+97 (2019).

    Google Scholar 

  • Jiang, W. G. et al. Spatio-temporal analysis of vegetation variation in the Yellow River basin. Ecol. Indic. 51, 117–126 (2015).

    Google Scholar 

  • Ndayisaba, F. et al. Understanding the spatial temporal vegetation dynamics in Rwanda. Remote Sens. 8(2), 129 (2016).

    ADS 

    Google Scholar 

  • Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449(7159), 213–217 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Chen, J. J., Yi, S. H. & Qin, Y. The contribution of plateau pika disturbance and erosion on patchy alpine grassland soil on the Qinghai-Tibetan Plateau: Implications for grassland restoration. Geoderma 297, 1–9 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Cai, H. Y., Yang, X. H. & Xu, X. L. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecol. Eng. 83, 112–119 (2015).

    Google Scholar 

  • Wang, P., Lassoie, J. P., Morreale, S. J. & Dong, S. K. A critical review of socioeconomic and natural factors in ecological degradation on the Qinghai-Tibetan Plateau. China. Rangel. J. 37(1), 1–9 (2015).

    Google Scholar 

  • Lu, C. B. & Hou, L. F. Cause analysis and Control Countermeasures of grassland degradation in Qilian County, Qinghai Province. Today Anim. Husb. Vet. Med. 34(02), 62 (2018).

    Google Scholar 

  • Guo, X. W. et al. Light grazing significantly reduces soil water storage in Alpine Grasslands on the Qinghai-Tibet Plateau. Sustainability. 12(6), 2523–2523 (2020).

    Google Scholar 

  • Bai, Y. F. et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 742, 140574–140574 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, T. et al. Unraveling the relative impacts of climate change and human activities on grassland productivity in Central Asia over last three decades. Sci. Total Environ. 743, 140649 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, A., Wu, J. G. & Huang, J. H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 27(7), 969–982 (2012).

    CAS 

    Google Scholar 

  • Wu, J. S. et al. Disentangling climatic and anthropogenic contributions to nonlinear dynamics of alpine grassland productivity on the Qinghai-Tibetan Plateau. J. Environ. Manag. 281, 111875–111875 (2020).

    Google Scholar 

  • Gang, C. et al. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop Sci. 201(1), 57–68 (2015).

    Google Scholar 

  • Gang, C. C. et al. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environ. Earth Sci. 72(11), 4273–4282 (2014).

    Google Scholar 

  • Chen, Y. Z. et al. Grassland carbon sequestration ability in China: A new perspective from terrestrial aridity zones. Rangeland Ecol. Manag. 69(1), 84–94 (2016).

    Google Scholar 

  • Mowll, W. et al. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia 177(4), 959–969 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Climate contributions to vegetation variations in central Asian Drylands: Pre- and post-USSR collapse. Remote Sens. 7(3), 2449–2470 (2015).

    ADS 

    Google Scholar 

  • Ji, Y. et al. Variation of net primary productivity and its drivers in China’s forests during 2000–2018. For. Ecosyst. 7(1), 1–11 (2020).

    CAS 

    Google Scholar 

  • Zeng, B. & Yang, T. B. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003. Environ. Monit. Assess. 144(1–3), 403–417 (2008).

    PubMed 

    Google Scholar 

  • Duan, A. M. & Xiao, Z. X. Does the climate warming hiatus exist over the Tibetan Plateau?. Sci. Rep. 5(1), 13711 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, J. Y. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32(21), L21411 (2005).

    ADS 

    Google Scholar 

  • Zhao, X., Tan, K., Zhao, S. & Fang, J. Changing climate affects vegetation growth in the arid region of the northwestern China. J. Arid Environ. 75(10), 946–952 (2011).

    ADS 

    Google Scholar 

  • Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change. 6(1), 75–78 (2016).

    ADS 

    Google Scholar 

  • Dong, S. K., Shang, Z. H., Gao, J. X. & Boone, R. B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 287(C), 106684 (2019).

    Google Scholar 

  • Xu, H. P. et al. Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels. Environ Monit Assess. 191(11), 678 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Wen, W. Y. et al. Research on soil net nitrogen mineralization in Stipa grandis grassland with different stages of degradation. Geosci J. 20(4), 485–494 (2016).

    ADS 
    CAS 

    Google Scholar 

  • She, Y. et al. Vegetation attributes and soil properties of alpine grassland in different degradation stages on the Qinghai-Tibet Plateau, China: A meta-analysis. Arab J Geosci. 15, 193 (2022).

    Google Scholar 

  • Xu, G. P. Study on the Change of Vegetation and Soil Nutrients of Alpine Meadow Under Different Degradation Degrees in Eastern Qilian Mountains (Gansu Agricultural University, 2006).

    Google Scholar 

  • Anderson, K. et al. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang. Biol. 26(3), 1608–1625 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, B. X. et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 189–190, 11–18 (2014).

    ADS 

    Google Scholar 

  • Zhang, X. W., Li, G., Dong, K. H. & Zhao, X. Effects of grazing and enclosure on community characteristics and biodiversity in Leymus chinensis grassland. J. Grassl. Forage Sci. 4, 22–27 (2019).

    Google Scholar 

  • Huang, K. et al. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 8(10), 876 (2016).

    ADS 

    Google Scholar 

  • Duan, Q. T., Luo, L. H., Zhao, W. Z., Zhuang, Y. L. & Liu, F. Mapping and evaluating human pressure changes in the Qilian mountains. Remote Sens. 13(12), 2400–2400 (2021).

    ADS 

    Google Scholar 

  • Wang, Y. et al. Performance and obstacle tracking to natural forest resource protection project: A rangers’ case of Qilian mountain, China. Int. J. Environ. Res. Public Health. 17(16), 5672 (2020).

    PubMed Central 

    Google Scholar 

  • Li, Z. Y. et al. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 735, 139370 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, C. X., de Jong, R., Schmid, B., Wulf, H. & Schaepman, M. E. Spatial variation of human influences on grassland biomass on the Qinghai-Tibetan plateau. Sci. Total Environ. 665, 678–689 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. L. et al. Rangeland degradation on the Qinghai-Tibet Plateau: Implications for rehabilitation. Land Degrad. Dev. 24, 72–80 (2011).

    Google Scholar 

  • Li, C. B. et al. Regional vegetation dynamics and its response to climate change—a case study in the Tao River Basin in Northwestern China. Environ. Res. Lett. 9(12), 125003–125003 (2014).

    ADS 

    Google Scholar 

  • Liu, Y. Y. et al. Untangling the effects of management measures, climate and land use cover change on grassland dynamics in the Qinghai-Tibet Plateau, China. Land Degrad. Dev. 32(17), 4974–4987 (2021).

    Google Scholar 

  • Hou, X. Chinese Grassland Science (Science Press, 2013) (In Chinese).

    Google Scholar 


  • Source: Ecology - nature.com

    Ultrasonic antifouling devices negatively impact Cuvier’s beaked whales near Guadalupe Island, México

    Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods