in

The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs

  • Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).

    PubMed 

    Google Scholar 

  • Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evolution 8, 1929–1939 (2016).

    CAS 

    Google Scholar 

  • Liu, W. et al. Single genome amplification and direct amplicon sequencing of Plasmodium spp. DNA from ape fecal specimens. Protocol Exchange 1–14 (2010).

  • Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prugnolle, F. et al. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proc. Natl Acad. Sci. USA 107, 1458–1463 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Otto, T. D. et al. Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria. Nat. Microbiol. 3, 687–697 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boundenga, L. et al. Diversity of malaria parasites in great apes in Gabon. Malar. J. 14, 1–8 (2015).

    CAS 

    Google Scholar 

  • Délicat-Loembet, L. et al. No evidence for ape Plasmodium infections in humans in gabon. Plos One 10, e0126933 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sundararaman, S. A. et al. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria. Proc. Natl Acad. Sci. USA 110, 7020–7025 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Junker, J. et al. Recent decline in suitable environmental conditions for African great apes. Diversity Distrib. 18, 1077–1091 (2012).

    Google Scholar 

  • de Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • de Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaiser, M. et al. Wild chimpanzees infected with 5 Plasmodium species. Emerg. Infect. Dis. 16, 1956–1959 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paupy, C. et al. Anopheles moucheti and Anopheles vinckei are candidate vectors of ape Plasmodium parasites, including Plasmodium praefalciparum in Gabon. PLoS ONE 8, e57294 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl Acad. Sci. USA 113, 5329–5334 (2016).

  • Loy, D. E. et al. Investigating zoonotic infection barriers to ape Plasmodium parasites using faecal DNA analysis. Int. J. Parasitol. 48, 531–542 (2018).

  • Martin, M., Rayner, J., Gagneux, P., Barnwell, J. & Varki, A. Evolution of human–chimpanzee differences in malaria susceptibility: Relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl Acad. Sci. USA 102, 12819–12824 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scully, E. J., Kanjee, U. & Duraisingh, M. T. Molecular interactions governing host-specificity of blood stage malaria parasites. Curr. Opin. Microbiol. 40, 21–31 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sundararaman, S. A. et al. Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nat. Commun. 7, 11078 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wanaguru, M., Liu, W., Hahn, B. H., Rayner, J. C. & Wright, G. J. RH5-Basigin interaction plays a major role in the host tropism of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 110, 20735–20740 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ngoubangoye, B. et al. The host specificity of ape malaria parasites can be broken in confined environments. Int. J. Parasitol. 46, 737–744 (2016).

    PubMed 

    Google Scholar 

  • Mapua, M. I. et al. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar. J. 15, 423 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, D. F. et al. Seasonal and inter-annual variation of malaria parasite detection in wild chimpanzees. Malar. J. 17, 1–5 (2018).

    CAS 

    Google Scholar 

  • Craig, M., le Sueur, D. & Snow, B. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).

    PubMed 

    Google Scholar 

  • Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl Acad. Sci. USA 107, 15135–15139 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).

    PubMed 

    Google Scholar 

  • LaPointe, D. A., Goff, M. L. & Atkinson, C. T. Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. J. Parasitol. 96, 318–324 (2010).

    PubMed 

    Google Scholar 

  • Vanderberg, J. P. & Yoeli, M. Effects of temperature on sporogonic development of Plasmodium berghei. J. Parasitol. 52, 559–564 (1966).

  • Macdonald, G. The Epidemiology and Control of Malaria (Oxford University Press, 1957).

  • Ryan, S. J. et al. Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. 15, 718–725 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gemperli, A. et al. Mapping malaria transmission in West and Central Africa. Tropical Med. Int. Health 11, 1032–1046 (2006).

    Google Scholar 

  • Gething, P. W. et al. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites Vectors 4, 92 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss, D. J. et al. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: a high-resolution spatiotemporal prediction. Malar. J. 13, 171 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyons, C. L., Coetzee, M. & Chown, S. L. Stable and fluctuating temperature effects on the development rate and survival of two malaria vectors, Anopheles arabiensis and Anopheles funestus. Parasites Vectors 6, 104 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS One 2, e1146 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Faust, C. & Dobson, A. P. Primate malarias: diversity, distribution and insights for zoonotic Plasmodium. One Health 1, 66–75 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tucker Lima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 372, 20160125 (2017).

    Google Scholar 

  • Borner, J. et al. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol. Phylogenetics Evolution 94, 221–231 (2016).

    CAS 

    Google Scholar 

  • Emery Thompson, M., Muller, M. N., Machanda, Z. P., Otali, E. & Wrangham, R. W. The Kibale Chimpanzee Project: over thirty years of research, conservation, and change. Biol. Conserv. 252, 108857 (2020).

    Google Scholar 

  • Langergraber, K. E., Mitani, J. C. & Vigilant, L. The limited impact of kinship on cooperation in wild chimpanzees. Proc. Natl Acad. Sci. USA 104, 7786–7790 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arandjelovic, M. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Mol. Ecol. Resour. 9, 28–36 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 220 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Torres, J. R. Therapy of Infectious Diseases 597–613 (2003).

  • Trampuz, A., Jereb, M., Muzlovic, I. & Prabhu, R. M. Clinical review: severe malaria. Crit. Care 7, 315 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Akim, N. I. et al. Dynamics of P. falciparum gametocytemia in symptomatic patients in an area of intense perennial transmission in Tanzania. Am. J. Tropical Med. Hyg. 63, 199–203 (2000).

    CAS 

    Google Scholar 

  • Mackinnon, M. J. & Read, A. F. Genetic relationships between parasite virulence and transmission in the rodent malaria Plasmodium chabaudi. Evolution 53, 689–703 (1999).

    PubMed 

    Google Scholar 

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Prugnolle, F. et al. African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains. Proc. Natl Acad. Sci. USA 108, 11948–11953 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ayouba, A. et al. Ubiquitous Hepatocystis infections, but no evidence of Plasmodium falciparum-like malaria parasites in wild greater spot-nosed monkeys (Cercopithecus nictitans). Int. J. Parasitol. 42, 709–713 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogenetics Evolution 47, 261–273 (2008).

    CAS 

    Google Scholar 

  • Thurber, M. I. et al. Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community. Int. J. Parasitol. 43, 613–619 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Baayen, R. H. Analyzing Linguistic Data: A Practical Introduction to Statistics (Cambridge University Press, 2008).

  • Stanisic, D. I. et al. Acquisition of antibodies against Plasmodium falciparum merozoites and malaria immunity in young children and the influence of age, force of infection, and magnitude of response. Infect. Immun. 83, 646–660 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, R. R., Allen, S. J., Greenwood, B. M. & Riley, E. M. IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. Am. J. Tropical Med. Hyg. 58, 406–413 (1998).

    CAS 

    Google Scholar 

  • World Malaria Report (World Health Organization, 2015).

  • Shaman, J. Letter to the Editor: Caution needed when using gridded meteorological data products for analyses in Africa. Eur. Surveill. 19, 20930 (2014).

    Google Scholar 

  • Tatem, A. J., Goetz, S. J. & Hay, S. I. Terra and Aqua: new data for epidemiology and public health. Int. J. Appl. Earth Observation Geoinf. 6, 33–46 (2004).

    Google Scholar 

  • Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Carter, R. & Mendis, K. N. Evolutionary and historical aspects of the burden of malaria. Clin. Microbiol. Rev. 15, 564–594 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tarello, W. A fatal Plasmodium reichenowi infection in a chimpanzee? Rev. de. Med. Veterinaire 156, 503–505 (2005).

    Google Scholar 

  • Taylor, D. W. et al. Parasitologic and immunologic studies of experimental Plasmodium falciparum infection in nonsplenectomized chimpanzees (Pan troglodytes). Am. J. Tropical Med. Hyg. 34, 36–44 (1985).

    CAS 

    Google Scholar 

  • Krief, S., Martin, M., Grellier, P., Kasenene, J. & Sevenet, T. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrobial Agents Chemother. 48, 3196–3199 (2004).

    CAS 

    Google Scholar 

  • Cox-Singh, J. et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46, 165–171 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Singh, B. & Daneshvar, C. Human infections and detection of Plasmodium knowlesi. Clin. Microbiol. Rev. 26, 165–184 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brasil, P. et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Global Health 5, e1038–e1046 (2017).

  • Krief, S. et al. On the diversity of malaria parasites in African apes and the origin of Plasmodium falciparum from bonobos. PLoS Pathog. 6, e1000765 (2010).

  • Pacheco, M. A., Cranfield, M., Cameron, K. & Escalante, A. A. Malarial parasite diversity in chimpanzees: the value of comparative approaches to ascertain the evolution of Plasmodium falciparum antigens. Malar. J. 12, 328 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Etienne, L. et al. Noninvasive follow-up of simian immunodeficiency virus infection in wild-living nonhabituated western lowland gorillas in Cameroon. J. Virol. 86, 9760–9772 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keele, B. F. et al. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313, 523–526 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keele, B. F. et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460, 515–519 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 86, 10776–10791 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neel, C. et al. Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas. J. Virol. 84, 1464–1476 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Rudicell, R. S. et al. Impact of simian immunodeficiency virus infection on chimpanzee population dynamics. PLoS Pathog. 6, 1–17 (2010).

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bates, D. & Maechler, M. Lme4: linear mixed-effects models using s4 classes. Cran R Project Website (2010).


  • Source: Ecology - nature.com

    Waste slag benefits for correction of soil acidity

    Honey bees save energy in honey processing by dehydrating nectar before returning to the nest