in

Predicting the effects of winter water warming in artificial lakes on zooplankton and its environment using combined machine learning models

  • Murphy, G. E. P., Romanuk, T. N. & Worm, B. Cascading effects of climate change on plankton community structure. Ecol. Evol. 10, 2170–2181. https://doi.org/10.1002/ece3.6055 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodward, G., Daniel, M., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055 (2010).

    Article 

    Google Scholar 

  • Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).

    Article 

    Google Scholar 

  • Gannon, J. E. & Stemberger, R. S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Microsc. Soc. 97, 16–35. https://doi.org/10.2307/3225681 (1978).

    Article 

    Google Scholar 

  • Ferdous, Z. & Muktadir, S. K. M. A review: Potentiality of zooplankton as bioindicator. Am. J. Appl. Sci. 6, 1815–1819 (2009).

    Article 

    Google Scholar 

  • Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer Trophic State Index. Pol. J. Ecol. 60, 339–350 (2012).

    Google Scholar 

  • Gillooly, J. F. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22(2), 241–251 (2000).

    Article 

    Google Scholar 

  • Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364. https://doi.org/10.1016/j.seares.2013.07.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • Carter, J. L. & Schindler, D. L. Responses of zooplankton populations to four decades of climate warming in Lakes of Southwestern Alaska. Ecosystems 15, 1010–1026. https://doi.org/10.1007/s10021-012-9560-0 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ejsmont-Karabin, J. & Węgleńska, T. Disturbances in zooplankton seasonality in Lake Gosławskie (Poland) affected by permanent heating and heavy fish stocking. Ekol. Pol. 36, 245–260 (1988).

    Google Scholar 

  • Ejsmont-Karabin, J. et al. Rotifers in Heated Konin Lakes—A review of long-term observations. Water 12, 1660. https://doi.org/10.3390/w12061660 (2020).

    Article 

    Google Scholar 

  • Evans, L. E., Hirst, A. G., Kratina, P. & Beaugrand, G. Temperature-mediated changes in zooplankton body size: Large scale temporal and spatial analysis. Ecography 43, 581–590. https://doi.org/10.1111/ecog.04631 (2020).

    Article 

    Google Scholar 

  • Wang, L. et al. Is zooplankton body size an indicator of water quality in (sub)tropical reservoirs in China?. Ecosystems 25, 656–662. https://doi.org/10.1007/s10021-021-00656-2 (2021).

    CAS 
    Article 

    Google Scholar 

  • Williamson, C. E., Saros, J. E., Vincent, W. F. & Smol, J. P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 54(6), 2273–2282 (2009).

    ADS 
    Article 

    Google Scholar 

  • Richardson, A. J. In hot water: Zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295. https://doi.org/10.1093/icesjms/fsn028 (2008).

    Article 

    Google Scholar 

  • Visconti, A., Manca, M. & De Bernardi, R. Eutrophication-like response to climate warming: An analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J. Limnol. 67(2), 87–92 (2008).

    Article 

    Google Scholar 

  • Vandysh, O. I. The effect of thermal flow of large power facilities on zooplankton community under subarctic conditions. Water Res. 36(3), 310–318. https://doi.org/10.1134/S0097807809030063 (2009).

    CAS 
    Article 

    Google Scholar 

  • Alric, B. et al. Local forcings affect lake zooplankton vulnerability and response to climate warming. Ecology 94(12), 2767–2780 (2013).

    Article 

    Google Scholar 

  • Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. PNAS 106(31), 12788–12793. https://doi.org/10.1073/pnas.0902080106 (2009).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutierrez, M. F. et al. Is recovery of large-bodied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, Denmark. Water 8, 341. https://doi.org/10.3390/w8080341 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884. https://doi.org/10.1038/nature02808 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Thackeray, S. J., Jones, I. D. & Maberly, S. C. Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523–535. https://doi.org/10.1111/j.1365-2745.2008.01355.x (2008).

    Article 

    Google Scholar 

  • Adrian, A., Wilhelm, S. & Gerten, D. Life-history traits of lake plankton species may govern their phenological response to climate warming. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol. 12, 652–661. https://doi.org/10.1111/j.1365-2486.2006.01125.x (2006).

    ADS 
    Article 

    Google Scholar 

  • Costello, J. H., Sullivan, B. K. & Gifford, D. J. A physical–biological interaction underlying variable phenological responses to climate change by coastal zooplankton. J. Plankton Res. 28(11), 1099–1105. https://doi.org/10.1093/plankt/fbl042 (2006).

    Article 

    Google Scholar 

  • Lewandowska, A. M. et al. Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623. https://doi.org/10.1111/ele.12265 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Wagner, C. & Adrian, R. Exploring lake ecosystems: Hierarchy responses to long-term change?. Glob. Change Biol. 15, 1104–1115. https://doi.org/10.1111/j.1365-2486.2008.01833.x (2009).

    ADS 
    Article 

    Google Scholar 

  • Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).

    Article 

    Google Scholar 

  • Carter, J. L., Schindler, D. E. & Francis, T. B. Effects of climate change on zooplankton community interactions in an Alaskan lake. Climate Change Resp. 4, 3. https://doi.org/10.1186/s40665-017-0031-x (2017).

    Article 

    Google Scholar 

  • Calbet, A. The trophic roles of microzooplankton in marine systems. ICES J. Mar. Sci. 65, 325–331 (2008).

    Article 

    Google Scholar 

  • Wollrab, S. et al. Climate change-driven regime shifts in a planktonic food web. Am. Natur. 197, 281–295. https://doi.org/10.1086/712813 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Recknagel, F., Adrian, R. & Köhler, J. Quantifying phenological asynchrony of phyto- and zooplankton in response to changing temperature and nutrient conditions in Lake Müggelsee (Germany) by means of evolutionary computation. Environ. Model. Softw. 146, 105224. https://doi.org/10.1016/j.envsoft.2021.105224 (2021).

    Article 

    Google Scholar 

  • EEA. Projected changes in annual, summer and winter temperature. European Environmental Agency. https://www.eea.europa.eu/data-and-maps/figures/projected-changes-in-annual-summer-1 (2014).

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021).

  • Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427. https://doi.org/10.1101/SQB.1957.022.01.039 (1957).

    Article 

    Google Scholar 

  • Ferrario, A. & Hämmerli, R. On Boosting: Theory and Applications. SSRN: https://ssrn.com/abstract=3402687 (2019).

  • Meysman, F. J. R. & Bruers, S. Ecosystem functioning and maximum entropy production: A quantitative test of hypotheses. Philos. Trans. R. Soc. B 365, 1405–1416. https://doi.org/10.1098/rstb.2009.0300 (2010).

    CAS 
    Article 

    Google Scholar 

  • Yu, Q., Ji, W., Prihodko, L., Anchang, J. Y. & Hanan, N. P. Study becomes insight: Ecological learning from machine learning. Methods Ecol. Evol. 12, 217–2128. https://doi.org/10.1111/2041-210X.13686 (2021).

    Article 

    Google Scholar 

  • Park, J. et al. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 832, 155070. https://doi.org/10.1016/j.scitotenv.2022.155070 (2022).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grbčić, L. et al. Coastal water quality prediction based on machine learning with feature interpretation and spatio-temporal analysis. Environ. Model. Softw. 155, 105458. https://doi.org/10.1016/j.envsoft.2022.105458 (2022).

    Article 

    Google Scholar 

  • Kruk, M., Artiemjew, P. & Paturej, E. The application of game theory-based machine learning modelling to assess climate variability effects on the sensitivity of lagoon ecosystem parameters. Ecol. Inf. 66, 101462. https://doi.org/10.1016/j.ecoinf.2021.101462 (2021).

    Article 

    Google Scholar 

  • Hebert, P. D. N. Competition in zooplankton communities. Ann. Zool. Fennici 19, 349–356 (1982).

    Google Scholar 

  • Eigen, M. & Winkler, R. Laws of the Game. How the Principles of Nature Govern Chance (Princeton University Press, 1993).

    Google Scholar 

  • Tilman, A. R., Plotkin, J. B. & Akçay, E. Evolutionary games with environmental feedbacks. Nat. Commun. 11, 915. https://doi.org/10.1038/s41467-020-14531-6 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shapley, L. S. A Value for n-Person Games. In Contributions to the Theory of Games II (eds Kuhn, H. W. & Tucker, A. W.) 315–317 (Princeton University Press, 1953).

    Google Scholar 

  • Lundberg, S. M. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  • Štrumbelj, E. & Kononenko, I. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 http://dl.acm.org/citation.cfm?id=1756006.1756007 (2010).

  • Gan, G., Ma, C. & Wu, J. Data clustering: Theory, algorithms, and applications. ASA-SIAM Ser. Stat. Appl. Math. https://doi.org/10.1137/1.9780898718348 (2007).

    Article 
    MATH 

    Google Scholar 

  • Riechert, S. E. & Hammerstein, P. Game theory in the ecological context. Ann. Rev. Ecol. Syst. 14, 377–409. https://doi.org/10.1146/annurev.es.14.110183.002113 (1983).

    Article 

    Google Scholar 

  • Maynard-Smith, J. Evolution and the Theory of Games (Cambridge University Press, 1982).

    Book 

    Google Scholar 

  • Nowak, M. A. & Sigmund, K. Evolutionary dynamics of biological games. Science 303(5659), 793–799. https://doi.org/10.1126/science.1093411 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Maloney, K. O., Schmid, M. & Weller, D. E. Applying additive modelling and gradient boosting to assess the effects of watershed and reach characteristics on riverine assemblages. Methods Ecol. Evol. 3, 116–128. https://doi.org/10.1111/j.2041-210X.2011.00124.x (2012).

    Article 

    Google Scholar 

  • Cao, H., Recknagel, F. & Orr, P. T. Parameter optimization algorithms for evolving rule models applied to freshwater ecosystems. IEEE Trans. Evol. Comput. 18, 793–806. https://doi.org/10.1109/TEVC.2013.2286404 (2014).

    Article 

    Google Scholar 

  • Naqshbandi, N., Iranmanesh, M. & Askari Hesni, M. Effects of environmental factors on species diversity of rotifers using biodiversity indicators and canonical correlation analysis (CCA). J. Aquat. Ecol. 7, 66–75 https://www.sid.ir/en/journal/ViewPaper.aspx?id=661950 (2017).

  • Weisse, M. & Frahm, A. Species-specific interactions between small planctonic ciliates (Urotricha spp.) and rotifers (Keratella spp.). J. Plank. Res. 23, 1329–1338 (2001).

    Article 

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11, 33–40 (1962).

    Article 

    Google Scholar 

  • Pomerleau, C., Sastri, A. R. & Beisner, B. E. Evaluation of functional trait diversity for marine zooplankton communities in the Northeast subarctic Pacific Ocean. J. Plankton Res. 37, 712–726. https://doi.org/10.1093/plankt/fbv045 (2015).

    Article 

    Google Scholar 

  • Hopcroft, R. R., Kosobokova, K. N. & Pinchuk, A. I. Zooplankton community patterns in the Chukchi Sea during summer 2004. Deep-Sea Res. II(57), 27–39. https://doi.org/10.1016/j.dsr2.2009.08.003 (2010).

    ADS 
    Article 

    Google Scholar 

  • Neumann, L. S. et al. Connectivity between coastal and oceanic zooplankton from Rio Grande do Norte in the Tropical Western Atlantic. Front. Mar. Sci. 6, 00287. https://doi.org/10.3389/fmars.2019.00287 (2019).

    Article 

    Google Scholar 

  • Benedetti, F., Ayata, S.-D., Irisson, J.-O., Adloff, F. & Guilhaumon, F. Climate change may have minor impact on zooplankton functional diversity in the Mediterranean Sea. Divers. Distrib. 25, 568–581. https://doi.org/10.1111/ddi.12857 (2019).

    Article 

    Google Scholar 

  • Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334. https://doi.org/10.1016/j.hal.2011.10.027 (2012).

    CAS 
    Article 

    Google Scholar 

  • Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–867 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jasnos, K., Kołba, P., Biernat, H. & Noga, B. The results of the hydrogeological research leading to know and develop the resources of thermal water in the Kleszczów district. Modelowanie Inżynierskie 45, 14 (2012).

    Google Scholar 

  • Rybak, J. I. & Błędzki, L. A Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).

    Google Scholar 

  • Kim, H.-W., Hwang, S.-J. & Joo, G.-J. Zooplankton grazing on bacteria and phytoplankton in a regulated large river (Nakdong River, Korea). J. Plankton Res. 22, 1559–1577 (2000).

    CAS 
    Article 

    Google Scholar 

  • Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).

    Article 

    Google Scholar 

  • Obertegger, U. & Flaim, G. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly?. Hydrobiologia 823, 79–91. https://doi.org/10.1007/s10750-018-3697-6 (2018).

    Article 

    Google Scholar 

  • Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–atlas of species. Polish freshwater fauna (University of Łódź, Łódź, 2004).

    Google Scholar 

  • Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 52, 886–895. https://doi.org/10.4319/lo.2007.52.2.0886 (2007).

    ADS 
    Article 

    Google Scholar 

  • Huntley, M. E. & Lopez, M. D. Temperature-dependent production of marine copepods: A global synthesis. Am. Nat. 140, 201–242. https://doi.org/10.1086/285410 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Olonscheck, D., Hofmann, M., Worm, B. & Schellnhuber, H. J. Decomposing the effects of ocean warming on chlorophyll a concentrations into physically and biologically driven contributions. Environ. Res. Lett. 8, 014043. https://doi.org/10.1088/1748-9326/8/1/014043 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hillebrand, H. et al. Goldman revisited: Faster-growing phytoplankton has lower N:P and lower stoichiometric flexibility. Limnol. Oceanogr. 58, 2076–2088. https://doi.org/10.4319/lo.2013.58.6.2076 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kruk, M., Kobos, J., Nawrocka, L. & Parszuto, K. Positive and negative feedback loops in nutrient phytoplankton interactions related to climate dynamics factors in a shallow temperate estuary (Vistula Lagoon, southern Baltic). J. Mar. Syst. 180, 49–58. https://doi.org/10.1016/j.jmarsys.2018.01.003 (2018).

    Article 

    Google Scholar 

  • Santer, B. & Hansen, A.-M. Diapause of Cyclops vicinus (Uljanin) in Lake Søbyga˚ rd: Indication of a risk-spreading strategy. Hydrobiologia 560, 217–226. https://doi.org/10.1007/s10750-005-1067-7 (2006).

    Article 

    Google Scholar 

  • Mayer, J. et al. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia 342(343), 165–174 (1997).

    Article 

    Google Scholar 

  • Galir Balkić, A., Ternjej, I. & Špoljar, M. Hydrology driven changes in the rotifer trophic structure and implications for food web interactions. Ecohydrology 11, 1917. https://doi.org/10.1002/eco.1917 (2018).

    Article 

    Google Scholar 

  • Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 27, 279–291. https://doi.org/10.1111/fme.12411 (2020).

    Article 

    Google Scholar 

  • Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).

    Article 

    Google Scholar 

  • von Flössner, D. Krebstiere (Branchiopoda, Fischläuse, Branchiura (VEB Gustav Fischer Verlag, Jena, 1972).

    Google Scholar 

  • Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband, 52–570, (Gebrüder Borntraeger, Berlin, 1978).

  • Streble H. & Krauter D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süβwassers. (Kosmos Gesellschaft der Naturfreunde Franckh’sche Verlagshandlung, Stuttgart, 1978).

  • Błędzki, L. A. & Rybak, J. I. Freshwater crustacean zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification with notes on ecology, distribution, methods and introduction to data analysis. (Springer, Switzerland, 2016).

  • Bottrell, H. H. et al. Review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).

    Google Scholar 

  • Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).

    Google Scholar 

  • APHA. Standard methods for the examination of water and wastewater, 20th ed.. (American Public Health Association, Washington, DC, 1999).

  • Wei, Z.-G. et al. Comparison of methods for picking the operational taxonomic units from amplicon sequences. Front. Microbiol. 24, 644012. https://doi.org/10.3389/fmicb.2021.644012 (2021).

    Article 

    Google Scholar 

  • Sgalella. Kaggle. https://www.kaggle.com/sgalella/correlation-heatmaps-with-hierarchical-clustering (2019).

  • Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet 
    Article 

    Google Scholar 

  • Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. 22 ACM SIGKDD Conference on Knowledge, Discovery and Data mining, 12–17 August, San Francisco. https://doi.org/10.1145/2939672.2939785 (2016).

  • Kirpal, E. Kaggle. https://www.kaggle.com/eshaan90/ensembles-and-model-stacking (2019).

  • Brownlee, J. Github. https://github.com/datamangit/codes_for_articles/blob/master/Explain%20your%20model%20with%20the%20SHAP%20values%20for%20article.ipynb (2021).

  • Rathi, P. Toward Data Science. https://towardsdatascience.com/a-novel-approach-to-feature-importance-shapley-additive-explanations-d18af30fc21 (2020).


  • Source: Ecology - nature.com

    Waste slag benefits for correction of soil acidity

    Honey bees save energy in honey processing by dehydrating nectar before returning to the nest