in

Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Seibold, S. et al. The contribution of insects to global forest deadwood decomposition. Nature 597, 77–81 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Filipiak, M. Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects. In Saproxylic Insects (ed. Ulyshen, M. D.) 429–470 (Springer, 2018).

    Google Scholar 

  • Weedon, J. T. et al. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species?. Ecol. Lett. 12, 45–56 (2009).

    PubMed 

    Google Scholar 

  • Oberle, B. et al. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Glob. Change Biol. 26, 864–875 (2020).

    ADS 

    Google Scholar 

  • Guo, C., Yan, E. & Cornelissen, J. H. C. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2022.06.003 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ulyshen, M. D. Wood decomposition as influenced by invertebrates. Biol. Rev. 91, 70–85 (2016).

    PubMed 

    Google Scholar 

  • Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. U.S.A. 117, 1–8 (2020).

    Google Scholar 

  • Tláskal, V. et al. Complementary roles of wood-Inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078-20 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, O. Wood and Tree Fungi: Biology, Damage, Protection and Use (Springer, 2006).

    Google Scholar 

  • Arantes, V. & Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 1158, 3–21 (2014).

    CAS 

    Google Scholar 

  • Jacobsen, R. M., Sverdrup-Thygeson, A., Kauserud, H., Mundra, S. & Birkemoe, T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 32, 2571–2582 (2018).

    Google Scholar 

  • Fukami, T. et al. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).

    PubMed 

    Google Scholar 

  • Wang, J. Y. et al. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 50, 110–127 (2018).

    CAS 

    Google Scholar 

  • Venugopal, P., Junninen, K., Linnakoski, R., Edman, M. & Kouki, J. Climate and wood quality have decayer-specific effects on fungal wood decomposition. For. Ecol. Manag. 360, 341–351 (2016).

    Google Scholar 

  • Ulyshen, M. D. & Wagner, T. L. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 4, 345–352 (2013).

    Google Scholar 

  • Freschet, G. T., Weedon, J. T., Aerts, R., van Hal, J. R. & Cornelissen, J. H. C. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. J. Ecol. 100, 161–170 (2012).

    Google Scholar 

  • Chang, C. et al. Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods Ecol. Evol. 11, 828–838 (2020).

    Google Scholar 

  • Hervé, V., Mothe, F., Freyburger, C., Gelhaye, E. & Frey-Klett, P. Density mapping of decaying wood using X-ray computed tomography. Int. Biodeterior. Biodegrad. 86, 358–363 (2014).

    Google Scholar 

  • Williamson, G. B. & Wiemann, M. C. Measuring wood specific gravity…Correctly. Am. J. Bot. 97, 519–524 (2010).

    PubMed 

    Google Scholar 

  • Van Der Wal, A., Gunnewiek, P. J. A. K., Cornelissen, J. H. C., Crowther, T. W. & De Boer, W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere 7, e01393 (2016).

    Google Scholar 

  • Saint-Germain, M., Buddle, C. M. & Drapeau, P. Substrate selection by saprophagous wood-borer larvae within highly variable hosts. Entomol. Exp. Appl. 134, 227–233 (2010).

    Google Scholar 

  • Lettenmaier, L. et al. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia https://doi.org/10.1007/s00442-022-05141-8 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gao, S. et al. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann. For. Sci. 74, 1–13 (2017).

    Google Scholar 

  • Arnstadt, T. et al. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 382, 129–142 (2016).

    Google Scholar 

  • Gessner, M. O. Ergosterol as a measure of fungal biomass. In Methods to Study Litter Decomposition (eds Bärlocher, F. et al.) 247–255 (Springer, 2020). https://doi.org/10.1007/978-3-030-30515-4_27.

    Chapter 

    Google Scholar 

  • Baldrian, P. et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 56, 60–68 (2013).

    CAS 

    Google Scholar 

  • Strid, Y., Schroeder, M., Lindahl, B., Ihrmark, K. & Stenlid, J. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol. 7, 47–58 (2014).

    Google Scholar 

  • Hagge, J. et al. Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proc. R. Soc. B Biol. Sci. 286, 20191744 (2019).

    Google Scholar 

  • Birkemoe, T., Jacobsen, R. M., Sverdrup-Thygeson, A. & Biedermann, P. H. W. Insect–fungus interactions in dead wood. In Saproxylic Insects (ed. Ulyshen, M. D.) 377–427 (Springer, 2018).

    Google Scholar 

  • Leach, J. G., Ork, L. W. & Christensen, C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 55, 129–140 (1937).

    Google Scholar 

  • Ulyshen, M. D., Wagner, T. L. & Mulrooney, J. E. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere 5, art47 (2014).

    Google Scholar 

  • Shigo, A. L. & Marx, H. G. Compartmentalization of decay in trees (1977).

  • De Ligne, L. et al. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung 76, 408–420 (2022).

    Google Scholar 

  • Freyburger, C., Longuetaud, F., Mothe, F., Constant, T. & Leban, J. M. Measuring wood density by means of X-ray computer tomography. Ann. For. Sci. 66, 804 (2009).

    Google Scholar 

  • Wei, Q., Leblon, B. & La Rocque, A. On the use of X-ray computed tomography for determining wood properties: A review. Can. J. For. Res. 41, 2120–2140 (2011).

    Google Scholar 

  • Fuchs, A., Schreyer, A., Feuerbach, S. & Korb, J. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manag. 50, 63–66 (2004).

    Google Scholar 

  • Choi, B., Himmi, S. K. & Yoshimura, T. Quantitative observation of the foraging tunnels in Sitka spruce and Japanese cypress caused by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray computer tomography (CT). Holzforschung 71, 535–542 (2017).

    CAS 

    Google Scholar 

  • Bélanger, S. et al. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs. J. Econ. Entomol. 106, 1331–1338 (2013).

    PubMed 

    Google Scholar 

  • Pereira Junior, A. & Garcia de Carvalho, M. An initial study in wood tomographic image classification using the SVM and CNN techniques. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) Vol. 4 575–581 (2022).

  • Kautz, M., Peter, F. J., Harms, L., Kammen, S. & Delb, H. Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle. J. Pest Sci. https://doi.org/10.1007/s10340-022-01490-8 (2022).

    Article 

    Google Scholar 

  • Ehnström, B. & Axelsson, R. Insektsgnag i bark och ved (ArtDatabanken SLU, 2002).

    Google Scholar 

  • Philpott, T. J., Prescott, C. E., Chapman, W. K. & Grayston, S. J. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For. Ecol. Manag. 315, 121–128 (2014).

    Google Scholar 

  • Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).

    Google Scholar 

  • Deflorio, G., Johnson, C., Fink, S. & Schwarze, F. W. M. R. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 255, 2373–2383 (2008).

    Google Scholar 

  • Fuhr, M. J., Schubert, M., Schwarze, F. W. M. R. & Herrmann, H. J. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 115, 919–932 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233. https://doi.org/10.1109/ISBI.2011.5872394 (2011).

  • Dodds, K. J., Graber, C. & Stephen, F. M. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environ. Entomol. 30, 17–22 (2001).

    Google Scholar 

  • Graham, S. A. Temperature as a limiting factor in the life of subcortical insects. J. Econ. Entomol. 17, 377–383 (1924).

    Google Scholar 

  • Baldrian, P. et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 6, 1–11 (2013).

    Google Scholar 

  • Šnajdr, J. et al. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 40, 2068–2075 (2008).

    Google Scholar 

  • Möller, G. Struktur- und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera—Käfer. Dissertation at Freien Universität Berlin (Freie Universität Berlin, 2009).

    Google Scholar 

  • Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Steger, C., Ulrich, M. & Wiedemann, C. Machine Vision Algorithms and Applications (Wiley, 2008).

    Google Scholar 

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation (Springer, 2015).

    Google Scholar 

  • Jansche, M. Maximum expected F-measure training of logistic regression models. In Proceedings of the conference on human language technology and empirical meth-ods in natural language processing 692–699 (Association for Computational Linguistics, 2005).

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

    Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chollet, F. Keras. https://github.com/fchollet/keras (2015).

  • Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Tensorflow.org. (2015).

  • R Core Team. R: A language and environment for statistical computing (2020).


  • Source: Ecology - nature.com

    Waste slag benefits for correction of soil acidity

    Honey bees save energy in honey processing by dehydrating nectar before returning to the nest