in

Predicting potential global and future distributions of the African armyworm (Spodoptera exempta) using species distribution models

  • Zeder, M. A. The domestication of animals. J. Anthropol. Res. 68, 161–190 (2012).

    Article 

    Google Scholar 

  • Zohary, D. & Hopf, M. Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and the Nile Valley (Oxford University Press, 2000).

    Google Scholar 

  • Epanchin-Niell, R., McAusland, C., Liebhold, A., Mwebaze, P. & Springborn, M. R. Biological invasions and international trade: Managing a moving target. Rev. Environ. Econom. Policy 15, 180–190 (2021).

    Article 

    Google Scholar 

  • Gippet, J. M. & Bertelsmeier, C. Invasiveness is linked to greater commercial success in the global pet trade. Proc. Natl. Acad. Sci. 118, e2016337118 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bertelsmeier, C. Globalization and the anthropogenic spread of invasive social insects. Curr. Opin. Insect Sci. 46, 16–23 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Charles, H. & Dukes, J. S. Biological Invasions 217–237 (Springer, 2008).

    Google Scholar 

  • Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Let. 12, 20150623 (2016).

    Article 

    Google Scholar 

  • Bertolino, S. et al. Spatially explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).

    Article 

    Google Scholar 

  • Grimaldi, D., Engel, M. S., Engel, M. S. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).

    MATH 

    Google Scholar 

  • Hill, M. P., Clusella-Trullas, S., Terblanche, J. S. & Richardson, D. M. Vol. 18, 883–891 (Springer, 2016).

  • Sawicka, B. & Egbuna, C. Natural Remedies for Pest, Disease and Weed Control 1–16 (Elsevier, 2020).

    Book 

    Google Scholar 

  • de la Vega, G. J. & Corley, J. C. Drosophila suzukii (Diptera: Drosophilidae) distribution modelling improves our understanding of pest range limits. Int. J. Pest Manag. 65, 217–227 (2019).

    Article 

    Google Scholar 

  • Kriticos, D. J. et al. The potential distribution of invading Helicoverpa armigera in North America: Is it just a matter of time? PLoS ONE 10, e0119618 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Early, R., González-Moreno, P., Murphy, S. T. & Day, R. Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. NeoBiota 40, 25–50 (2018).

    Article 

    Google Scholar 

  • Day, R. et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 28, 196–201 (2017).

    Article 

    Google Scholar 

  • Rose, D. D. & Page, W. W. The African Armyworm Handbook 304 (Chatham, 2000).

    Google Scholar 

  • De Groote, H. et al. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agric. Ecosyst. Environ. 292, 106804 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cheke, R. & Tucker, M. An evaluation of potential economic returns from the strategic control approach to the management of African armyworm Spodoptera exempta (Lepidoptera: Noctuidae) populations in eastern Africa. Crop Prot. 14, 91–103 (1995).

    Article 

    Google Scholar 

  • Fox, K. Migrant Lepidoptera in New Zealand 1972–1973. N. Z. Entomol. 5, 268–271 (1973).

    Article 

    Google Scholar 

  • Baker, G. An Outbreak of Spodoptera exempta (Walker) (Lepidoptera: Noctuidae) in the Highlands of Papua New Guinea (1978).

  • Haggis, M. J. Distribution, Frequency of Attack and Seasonal Incidence of the African Armyworm Spodoptera exempta (Walk.) (Lep.: Noctuidae), with Particular Reference to Africa and Southwestern Arabia (Tropical Development and Research Institute, 1984).

    Google Scholar 

  • Brown, E. Control of the African armyworm, Spodoptera exempta (Walk.)—An appreciation of the problem. East Afr. Agric. For. J. 35, 237–245 (1970).

    Article 

    Google Scholar 

  • Rose, D. & Rainey, R. C. The significance of low-density populations of the African armyworm Spodoptera exempta (Walk.). Philos. Trans. R. Soc. Lond. B Biol. Sci. 287, 393–402 (1979).

    ADS 
    Article 

    Google Scholar 

  • Tucker, M. & Pedgley, D. Rainfall and outbreaks of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae). Bull. Entomol. Res. 73, 195–199 (1983).

    Article 

    Google Scholar 

  • Tucker, M. Forecasting the severity of armyworm seasons in East Africa from early season rainfall. Int. J. Trop. Insect Sci. 5, 51–55 (1984).

    Article 

    Google Scholar 

  • Wilson, K. & Gatehouse, A. Seasonal and geographical variation in the migratory potential of outbreak populations of the African armyworm moth, Spodoptera exempta. J. Anim. Ecol. 62, 169–181 (1993).

    Article 

    Google Scholar 

  • Odiyo, P. O. Development of the first outbreaks of the African armyworm, Spodoptera exempta (Walk.), between Kenya and Tanzania during the ‘off-season’ months of July to December. Int. J. Trop. Insect Sci. 1, 305–318 (1981).

    Article 

    Google Scholar 

  • Haggis, M. Forecasting the severity of seasonal outbreaks of African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae) in Kenya from the previous year’s rainfall. Bull. Entomol. Res. 86, 129–136 (1996).

    Article 

    Google Scholar 

  • Harvey, A. & Mallya, G. Predicting the severity of Spodoptera exempta (Lepidoptera: Noctuidae) outbreak seasons in Tanzania. Bull. Entomol. Res. 85, 479–487 (1995).

    Article 

    Google Scholar 

  • Holt, J., Mushobozi, W., Tucker, M. & Venn, J. Workshop on Research Priorities for Migrant Pests of Agriculture in Southern Africa, 151.

  • Matthew Hill, T. C. M. Bloomberg (Online, 2017).

  • Wilson, K. The Conversation (United Kingdom, 2017).

  • Day, R. K. et al. WormBase: A data management and information system for forecasting Spodoptera exempta (Lepidoptera: Noctuidae) in eastern Africa. J. Econ. Entomol. 89, 1–10 (1996).

    Article 

    Google Scholar 

  • Guisan, A. & Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Article 

    Google Scholar 

  • Bosso, L. et al. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invas. https://doi.org/10.1007/s10530-022-02838-y (2022).

    Article 

    Google Scholar 

  • Sutherst, R. W. Pest species distribution modelling: Origins and lessons from history. Biol. Invas. 16, 239–256 (2014).

    Article 

    Google Scholar 

  • Méndez-Vázquez, L. J., Lira-Noriega, A., Lasa-Covarrubias, R. & Cerdeira-Estrada, S. Delineation of site-specific management zones for pest control purposes: Exploring precision agriculture and species distribution modeling approaches. Comput. Electron. Agric. 167, 105101 (2019).

    Article 

    Google Scholar 

  • Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).

    CAS 
    Article 

    Google Scholar 

  • Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 4858 (2019).

    ADS 
    Article 

    Google Scholar 

  • Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (Wiley, 2013).

    MATH 
    Book 

    Google Scholar 

  • Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Kalisa, W. et al. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 9, 1–20 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 1–12 (2018).

    ADS 
    Article 

    Google Scholar 

  • Mayaux, P., Bartholomé, E., Fritz, S. & Belward, A. A new land-cover map of Africa for the year 2000. J. Biogeogr. 31, 861–877 (2004).

    Article 

    Google Scholar 

  • Marchant, R. et al. Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth Sci. Rev. 178, 322–378 (2018).

    ADS 
    Article 

    Google Scholar 

  • Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).

    Article 

    Google Scholar 

  • Pemberton, C. E. Highlights in the history of entomology in Hawaii 1778–1963. Pac. Insects 6, 689–729 (1964).

    Google Scholar 

  • Andow, D. A. Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36, 561–586 (1991).

    Article 

    Google Scholar 

  • Andow, D. The extent of monoculture and its effects on insect pest populations with particular reference to wheat and cotton. Agr. Ecosyst. Environ. 9, 25–35 (1983).

    Article 

    Google Scholar 

  • Oliveira, C., Auad, A., Mendes, S. & Frizzas, M. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot. 56, 50–54 (2014).

    Article 

    Google Scholar 

  • Furlong, M. J., Wright, D. J. & Dosdall, L. M. Diamondback moth ecology and management: Problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howse, M. W., Haywood, J. & Lester, P. J. Bioclimatic modelling identifies suitable habitat for the establishment of the invasive European paper wasp (Hymenoptera: Vespidae) across the southern hemisphere. Insects 11, 784 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Rose, D., Dewhurst, C., Page, W. & Fishpool, L. The role of migration in the life system of the African armyworm Spodoptera exempta. Int. J. Trop. Insect Sci. 8, 561–569 (1987).

    Article 

    Google Scholar 

  • Dewhurst, C. F., Page, W. W. & Rose, D. J. The relationship between outbreaks, rainfall and low density populations of the African armyworm, Spodoptera exempta, Kenya. Entomol. Exp. et Appl. 98, 285–294 (2001).

    Article 

    Google Scholar 

  • Aguilon, D. J. & Velasco, L. R. Effects of larval rearing temperature and host plant condition on the development, survival, and coloration of African armyworm, Spodoptera exempta Walker (Lepidoptera: Noctuidae). J. Environ. Sci. Manag. 18, 54 (2015).

    Article 

    Google Scholar 

  • David, W. & Ellaby, S. The viability of the eggs of the African army-worm, Spodoptera exempta in laboratory cultures. Entomol. Exp. Appl. 18, 269–280 (1975).

    Article 

    Google Scholar 

  • He, L., Zhao, S., Ali, A., Ge, S. & Wu, K. Ambient humidity affects development, survival, and reproduction of the invasive fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), China. J. Econ. Entomol. 114, 1145–1158 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Janssen, J. Effects of the mineral composition and water content of intact plants on the fitness of the African armyworm. Oecologia 95, 401–409 (1993).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shahzad, M. S. et al. Modelling population dynamics of army worm (Spodoptera litura F.) (Lepidoptera: Noctuiidae) in relation to meteorological factors in Multan, Punjab, Pakistan. Int. J. Agron. Agric. Res. 5, 39–45 (2014).

    Google Scholar 

  • Garcia, A. G., Ferreira, C. P., Godoy, W. A. & Meagher, R. L. A computational model to predict the population dynamics of Spodoptera frugiperda. J. Pest. Sci. 92, 429–441 (2019).

    Article 

    Google Scholar 

  • Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455 (2006).

    ADS 
    Article 

    Google Scholar 

  • Vanhanen, H., Veteli, T. O., Paivinen, S., Kellomaki, S. & Niemela, P. Climate change and range shifts in two insect defoliators: Gypsy moth and nun moth-a model study. Silva Fennica 41, 621 (2007).

    Article 

    Google Scholar 

  • Falk, W. & Hempelmann, N. Species favourability shift in Europe due to climate change: A case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J. Climatol. 2013, 1–18 (2013).

    Article 

    Google Scholar 

  • Arora, R. & Dhawan, A. Climate Change and Insect Pest Management. Integrated Pest Management 44–60 (Scientific Publisher, 2013).

    Google Scholar 

  • Andrew, N. R. & Hill, S. J. Effect of climate change on insect pest management. In Environmental Pest Management: Challenges for Agronomists, Ecologists, Economists and Policymakers, 197 (2017).

  • De Boer, J. G. & Harvey, J. A. Range-expansion in processionary moths and biological control. Insects 11, 267 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Bras, A. et al. A complex invasion story underlies the fast spread of the invasive box tree moth (Cydalima perspectalis) across Europe. J. Pest. Sci. 92, 1187–1202 (2019).

    Article 

    Google Scholar 

  • Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Barford, E. Crop pests advancing with global warming. Nature 10, 13644 (2013).

    Google Scholar 

  • Bebber, D. P., Ramotowski, M. A. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).

    ADS 
    Article 

    Google Scholar 

  • Rubenstein, D. I. The greenhouse effect and changes in animal behavior: Effects on social structure and life-history strategies. In Global Warming and Biological Diversity, 180–192 (1992).

  • Karuppaiah, V. & Sujayanad, G. Impact of climate change on population dynamics of insect pests. World J. Agric. Sci. 8, 240–246 (2012).

    Google Scholar 

  • Jakhar, B. et al. Influence of climate change on Helicoverpa armigera (Hubner) in pigeonpea. J. Agric. Ecol. 2, 25–31 (2016).

    Google Scholar 

  • Akbar, S. M., Pavani, T., Nagaraja, T. & Sharma, H. Influence of CO 2 and temperature on metabolism and development of Helicoverpa armigera (Noctuidae: Lepidoptera). Environ. Entomol. 45, 229–236 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Magandana, T. P., Hassen, A. & Tesfamariam, E. H. Seasonal herbaceous structure and biomass production response to rainfall reduction and resting period in the semi-arid grassland area of South Africa. Agronomy 10, 1807 (2020).

    CAS 
    Article 

    Google Scholar 

  • Gherardi, L. A. & Sala, O. E. Enhanced precipitation variability decreases grass-and increases shrub-productivity. Proc. Natl. Acad. Sci. 112, 12735–12740 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scheiter, S. & Higgins, S. I. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach. Glob. Change Biol. 15, 2224–2246 (2009).

    ADS 
    Article 

    Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).

    Article 

    Google Scholar 

  • Jiménez-Valverde, A., Lobo, J. & Hortal, J. The effect of prevalence and its interaction with sample size on the reliability of species distribution models. Community Ecol. 10, 196–205 (2009).

    Article 

    Google Scholar 

  • Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345–368 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellis, S. New pest response guidelines: Spodoptera. USDA/APHIS/PPQ/PDMP (2004).

  • Waage, J. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. B Biol. Sci. 363, 863–876 (2008).

    CAS 
    Article 

    Google Scholar 

  • Anand, M. A systems approach to agricultural biosecurity. Health Secur. 16, 58–68 (2018).

    PubMed 
    Article 

    Google Scholar 

  • MacLeod, A., Pautasso, M., Jeger, M. J. & Haines-Young, R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2, 49–70 (2010).

    Article 

    Google Scholar 

  • Jiménez-Valverde, A. et al. Use of niche models in invasive species risk assessments. Biol. Invas. 13, 2785–2797 (2011).

    Article 

    Google Scholar 

  • Oluwole, F. A., Sambo, J. M. & Sikhalazo, D. Long-term effects of different burning frequencies on the dry savannah grassland in South Africa. Afr. J. Agric. Res. 3, 147–153 (2008).

    Google Scholar 

  • Kalleshwaraswamy, C. et al. First Report of the Fall Armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an Alien Invasive Pest on Maize in India (2018).

  • Bentivenha, J., Baldin, E., Hunt, T., Paula-Moraes, S. & Blankenship, E. Intraguild competition of three noctuid maize pests. Environ. Entomol. 45, 999–1008 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chapman, J. W. et al. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav. Ecol. 10, 298–303 (1999).

    Article 

    Google Scholar 

  • Divya, J., Kalleshwaraswamy, C., Mallikarjuna, H. & Deshmukh, S. Does recently invaded fall armyworm, Spodoptera frugiperda displace native lepidopteran pests of maize in India? Curr. Sci. 120, 1358 (2021).

    Article 

    Google Scholar 

  • Hailu, G. et al. Could fall armyworm, Spodoptera frugiperda (JE Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems. Int. J. Trop. Insect Sci. 41, 1753–1762 (2021).

    Article 

    Google Scholar 

  • Srivastava, V., Lafond, V. & Griess, V. C. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Rev. 14, 1–13 (2019).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    ADS 
    Article 

    Google Scholar 

  • Wu, T. et al. The Beijing Climate Center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).

    ADS 
    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change 42, 169–180 (2017).

    Article 

    Google Scholar 

  • Petitpierre, B., Broennimann, O., Kueffer, C., Daehler, C. & Guisan, A. Selecting predictors to maximize the transferability of species distribution models: Lessons from cross-continental plant invasions. Glob. Ecol. Biogeogr. 26, 275–287 (2017).

    Article 

    Google Scholar 

  • Cano, J. et al. Modelling the spatial distribution of aquatic insects (Order Hemiptera) potentially involved in the transmission of Mycobacterium ulcerans in Africa. Parasit. Vectors 11, 1–16 (2018).

    Article 

    Google Scholar 

  • Gómez-Undiano, I. Modelos y patrones de distribución geográfica de especies de Culicidae (Culex pipiens, Mansonia africana y Mansonia uniformis) vectores de filariasis linfática en ámbitos urbanos y periurbanos del África subsahariana. Máster en Zoología thesis, Universidad Complutense de Madrid (2018).

  • R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).

  • Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article 

    Google Scholar 

  • Thuiller, W. et al. Package ‘biomod2’. Species Distribution Modeling Within an Ensemble Forecasting Framework (2016).

  • Acevedo, P., Jiménez-Valverde, A., Lobo, J. M. & Real, R. Delimiting the geographical background in species distribution modelling. J. Biogeogr. 39, 1383–1390 (2012).

    Article 

    Google Scholar 

  • VanDerWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecol. Model. 220, 589–594 (2009).

    Article 

    Google Scholar 

  • Hijmans, R., Phillips, S., Leathwick, J. & Elith, J. (2012).

  • Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Gama, M., Crespo, D., Dolbeth, M. & Anastácio, P. M. Ensemble forecasting of Corbicula fluminea worldwide distribution: Projections of the impact of climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 675–684 (2017).

    Article 

    Google Scholar 

  • Liu, C., White, M., Newell, G. & Griffioen, P. Species distribution modelling for conservation planning in Victoria, Australia. Ecol. Model. 249, 68–74 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Hardship at birth alters the impact of climate change on a long-lived predator

    A deeper understanding of system interactions can explain contradictory field results on pesticide impact on honey bees