in

Stress responses to repeated captures in a wild ungulate

  • Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Keuling, O., Lauterbach, K., Stier, N. & Roth, M. Hunter feedback of individually marked wild boar Sus scrofa L.: Dispersal and efficiency of hunting in northeastern Germany. Eur. J. Wildl. Res. 56, 159–167 (2010).

    Article 

    Google Scholar 

  • Trondrud, L. M. et al. Fat storage influences fasting endurance more than body size in an ungulate. Funct. Ecol. 35, 1470–1480 (2021).

    CAS 
    Article 

    Google Scholar 

  • Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Kukalová, M., Gazárková, A. & Adamík, P. Should i stay or should i go? The influence of handling by researchers on den use in an arboreal nocturnal rodent. Ethology 119, 848–859 (2013).

    Article 

    Google Scholar 

  • Holt, R. D. et al. Estimating duration of short-term acute effects of capture handling and radiomarking. J. Wildl. Manag. 73, 989–995 (2009).

    Article 

    Google Scholar 

  • Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. Effects of capture and transport on blood parameters in free-ranging mouflon (Ovis ammon). J. Zoo Wildl. Med. 28, 428–433 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Cattet, M., Boulanger, J., Stenhouse, G., Powell, R. A. & Reynolds-Hogland, M. J. An evaluation of long-term capture effects in ursids: Implications for wildlife welfare and research. J. Mammal. 89, 973–990 (2008).

    Article 

    Google Scholar 

  • Mortensen, R. M. & Rosell, F. Long-term capture and handling effects on body condition, reproduction and survival in a semi-aquatic mammal. Sci. Rep. 10, 1–16 (2020).

    Article 

    Google Scholar 

  • Soulsbury, C. D. et al. The welfare and ethics of research involving wild animals: A primer. Methods Ecol. Evol. 11, 1164–1181 (2020).

    Article 

    Google Scholar 

  • Herman, J. P. et al. Regulation of the hypothalamic-pituitary- adrenocortical stress response. Compr. Physiol. 6, 603–621 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Sjaastad, V. Ø., Hove, K. & Sand, O. Physiology of Domestic Animals (Scandinavian Veterinary Press, 2016).

    Google Scholar 

  • Omsjø, E. H. et al. Evaluating capture stress and its effects on reproductive success in Svalbard reindeer. Can. J. Zool. 87, 73–85 (2009).

    Article 

    Google Scholar 

  • Marco, I., Viñas, L., Velarde, R., Pastor, J. & Lavin, S. The stress response to repeated capture in mouflon (Ovis ammon): Physiological, haematological and biochemical parameters. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 45, 243–253 (1998).

    CAS 
    Article 

    Google Scholar 

  • Hattingh, J., Pitts, N. I. & Ganhao, M. F. Immediate response to repeated capture and handling of wild impala. J. Exp. Zool. 248, 109–112 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ortega, A. C. et al. Effectiveness of partial sedation to reduce stress in captured mule deer. J. Wildl. Manag. 84, 1445–1456 (2020).

    Article 

    Google Scholar 

  • Arnemo, J. M. & Caulkett, N. Stress. In Zoo Animal and Wildlife Anesthesia and Immobilization (eds West, G. et al.) 103–109 (Blackwell Publications, 2007).

    Google Scholar 

  • Sinclair, M. D. A review of the physiological effects of α2-agonists related to the clinical use of medetomidine in small animal practice. Can. Vet. J. 44, 885–897 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ranheim, B. et al. The effects of medetomidine and its reversal with atipamezole on plasma glucose, cortisol and noradrenaline in cattle and sheep. J. Vet. Pharmacol. Ther. 23, 379–387 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carroll, G. L. et al. Effect of medetomidine and its antagonism with atipamezole on stress-related hormones, metabolites, physiologic responses, sedation, and mechanical threshold in goats. Vet. Anaesth. Analg. 32, 147–157 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rode, K. D. et al. Effects of capturing and collaring on polar bears: finDings from long-term research on the southern Beaufort Sea population. Wildl. Res. 41, 311–322 (2014).

    Article 

    Google Scholar 

  • Sakamoto, H., Misumi, K., Nakama, M. & Aoki, Y. The effects of xylazine on intrauterine pressure, uterine blood flow, maternal and fetal cardiovascular and pulmonary function in pregnant goats. J. Vet. Med. Sci. 58, 211–217 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Katila, T. & Oijala, M. The effect of detomidine (Domosedan) on the maintenance of equine pregnancy and foetal development: ten cases. Equine Vet. J. 20, 323–326 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larsen, D. G. & Gauthier, D. A. Effects of capturing pregnant moose and calves on calf survivorship. J. Wildl. Manag. 53, 564 (1989).

    Article 

    Google Scholar 

  • Côté, S. D., Festa-Bianchet, M. & Fournier, F. Life-history effects of chemical immobilization and radiocollars on mountain goats. J. Wildl. Manage. 62, 745–752 (1998).

    Article 

    Google Scholar 

  • DelGiudice, G. D., Mech, L. D., Paul, W. J. & Karns, P. D. Effects on fawn survival of multiple immobilizations of captive pregnant white-tailed deer. J. Wildl. Dis. 22, 245–248 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brivio, F., Grignolio, S., Sica, N., Cerise, S. & Bassano, B. Assessing the impact of capture on wild animals: The case study of chemical immobilisation on alpine ibex. PLoS ONE 10, e0130957 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wingfield, J. C. et al. Ecological bases of hormone-behavior interactions: The ‘emergency life history stage’. Am. Zool. 38, 191–206 (1998).

    CAS 
    Article 

    Google Scholar 

  • Huber, S., Palme, R. & Arnold, W. Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen. Comp. Endocrinol. 130, 48–54 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morellet, N. et al. The effect of capture on ranging behaviour and activity of the European roe deer Capreolus capreolus. Wildlife Biol. 15, 278–287 (2009).

    Article 

    Google Scholar 

  • Tarlow, E. M. & Blumstein, D. T. Evaluating methods to quantify anthropogenic stressors on wild animals. Appl. Anim. Behav. Sci. 102, 429–451 (2007).

    Article 

    Google Scholar 

  • Hik, D. S. Does risk of predation influence the cyclic decline of snowshoe hares. Wildl. Res. 22, 115–129 (1995).

    Article 

    Google Scholar 

  • Ordiz, A. et al. Lasting behavioural responses of brown bears to experimental encounters with humans. J. Appl. Ecol. 50, 306–314 (2013).

    Article 

    Google Scholar 

  • Dechen Quinn, A. C., Williams, D. M. & Porter, W. F. Postcapture movement rates can inform data-censoring protocols for GPS-collared animals. J. Mammal. 93, 456–463 (2012).

    Article 

    Google Scholar 

  • Cattet, M. R. L. Falling through the cracks: Shortcomings in the collaboration between biologists and veterinarians and their consequences for wildlife. ILAR J. 54, 33–40 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Albon, S. D. et al. Contrasting effects of summer and winter warming on body mass explain population dynamics in a food-limited Arctic herbivore. Glob. Change Biol. 23, 1374–1389 (2017).

    ADS 
    Article 

    Google Scholar 

  • Ovejero, R. et al. Do cortisol and corticosterone play the same role in coping with stressors? Measuring glucocorticoid serum in free-ranging guanacos (Lama guanicoe). J. Exp. Zool. Part A Ecol. Genet. Physiol. 319, 539–547 (2013).

    CAS 
    Article 

    Google Scholar 

  • Bonacic, C., Feber, R. E. & Macdonald, D. W. Capture of the vicuña (Vicugna vicugna) for sustainable use: Animal welfare implications. Biol. Conserv. 129, 543–550 (2006).

    Article 

    Google Scholar 

  • Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. Part A Ecol. Integr. Physiol. 337, 7–14 (2022).

    CAS 
    Article 

    Google Scholar 

  • Sire, J. E. et al. The effect of blood sampling on plasma cortisol in female reindeer (Rangifer tarandus tarandus L). Acta Vet. Scand. 36, 583–587 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harlow, H. J., Thorne, E. T., Williams, E. S., Belden, E. L. & Gern, W. A. Adrenal responsiveness in domestic sheep ( Ovis aries ) to acute and chronic stressors as predicted by remote monitoring of cardiac frequency. Can. J. Zool. 65, 2021–2027 (1987).

    Article 

    Google Scholar 

  • Pottinger, T. G. & Moran, T. A. Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J. Fish Biol. 43, 121–130 (1993).

    CAS 
    Article 

    Google Scholar 

  • Arnemo, J. M. & Ranheim, B. Effects of medetomidine and atipamezole on serum glucose and cortisol levels in captive reindeer (Rangifer tarandus tarandus). Rangifer 19, 85–89 (1999).

    Article 

    Google Scholar 

  • Mentaberre, G. et al. Effects of azaperone and haloperidol on the stress response of drive-net captured Iberian ibexes (Capra pyrenaica). Eur. J. Wildl. Res. 56, 757–764 (2010).

    Article 

    Google Scholar 

  • Northrup, J. M., Anderson, C. R. & Wittemyer, G. Effects of helicopter capture and handling on movement behavior of mule deer. J. Wildl. Manag. 78, 731–738 (2014).

    Article 

    Google Scholar 

  • Jung, T. S. et al. Short-term effect of helicopter-based capture on movements of a social ungulate. J. Wildl. Manag. 83, 830–837 (2019).

    Article 

    Google Scholar 

  • Nurmi, H., Laaksonen, S., Raekallio, M. & Hänninen, L. Wintertime pharmacokinetics of intravenously and orally administered meloxicam in semi-domesticated reindeer (Rangifer tarandus tarandus). Vet. Anaesth. Analg. 49, 423–428 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chapple, R. S., English, A. W., Mulley, R. C. & Lepherd, E. E. Haematology and serum biochemistry of captive unsedated chital deer (Axis axis) in Australia. J. Wildl. Dis. 27, 396–406 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brosh, A. Heart rate measurements as an index of energy expenditure and energy balance in ruminants: A review1. J. Anim. Sci. 85, 1213–1227 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Suazo, A. A., Delong, A. T., Bard, A. A. & Oddy, D. M. Repeated capture of beach mice (Peromyscus polionotus phasma and P. P. niveiventris) reduces body mass. J. Mammal. 86, 520–523 (2005).

    Article 

    Google Scholar 

  • Hoyle, S. D., Horsup, A. B., Johnson, C. N., Crossman, D. G. & McCallum, H. Live-trapping of the northern hairy-nosed wombat (Lasiorhinus krefftii): Population-size estimates and effects on individuals. Wildl. Res. 22, 741–755 (1995).

    Article 

    Google Scholar 

  • Estruelas, N. F. Short- and long-term physiological effects of capture and handling on free-ranging brown bears (Ursus arctos). PhD Thesis. (Inland Norway University of Applied Sciences, 2017).

  • Veiberg, V. et al. Maternal winter body mass and not spring phenology determine annual calf production in an Arctic herbivore. Oikos 126, 980–987 (2017).

    Article 

    Google Scholar 

  • Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Change Biol. 27, 993–1002 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Larsen, T. S., Nilsson, N. & Blix, A. S. Seasonal changes in lipogenesis and lipolysis in isolated adipocytes from Svalbard and Norwegian reindeer. Acta Physiol. Scand. 123, 97–104 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Colman, J. E., Jacobsen, B. W. & Reimers, E. Summer response distances of Svalbard reindeer (Rangifer tarandus platyrhynchus) to provocation by humans on foot. Wildlife Biol. 7, 275–283 (2001).

    Article 

    Google Scholar 

  • Trondrud, L. M. et al. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200215 (2021).

    Article 

    Google Scholar 

  • Pigeon, G. et al. Context-dependent fitness costs of reproduction despite stable body mass costs in an Arctic herbivore. J. Anim. Ecol. 91, 61–73 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Peeters, B., Pedersen, Å., Veiberg, V. & Hansen, B. Hunting quotas, selectivity and stochastic population dynamics challenge the management of wild reindeer. Clim. Res. https://doi.org/10.3354/cr01668 (2021).

    Article 

    Google Scholar 

  • Loe, L. E. et al. Activity pattern of arctic reindeer in a predator-free environment: No need to keep a daily rhythm. Oecologia 152, 617–624 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Dahl, S. R. et al. Assay of steroids by liquid chromatography–tandem mass spectrometry in monitoring 21-hydroxylase deficiency. Endocr. Connect. 7, 1542–1550 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Loe, L. E. et al. Testing five hypotheses of sexual segregation in an arctic ungulate. J. Anim. Ecol. 75, 485–496 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Reimers, E., Lund, S. & Ergon, T. Vigilance and fright behaviour in the insular Svalbard reindeer (Rangifer tarandus platyrhynchus). Can. J. Zool. 89, 753–764 (2011).

    Article 

    Google Scholar 

  • The R Core Team. R: A language and environment for statistical computing (2021).

  • Burnham, K. P. & Anderson, D. R. in Model selection and multimodel inference. A Practical Information-Theoretic Approach. Ecological Modelling (Springer, 2002).

  • Blanchet, F. G., Tikhonov, G. & Norberg, A. HMSC: Hierarchical modelling of species community. R package version 2.2-0 (2019).

  • Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology (Elsevier Science BV, 2012).

    MATH 

    Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K.-Y. & Zeger, S. L. Analysis of Longitudinal Data (Oxford University Press, 2013).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China

    Processing waste biomass to reduce airborne emissions