Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
Zhao, J., Wang, B., Li, Q., Yang, H. & Xu, K. Analysis of soil degradation causes in Phyllostachys edulis forests with different mulching years. Forests 9(3), 149 (2018).
Google Scholar
Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).
Google Scholar
Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).
Google Scholar
Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).
Google Scholar
Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).
Google Scholar
Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S. & Rachmawati, R. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. J. Degrade. Min. Land Manage. 6(3), 1727–1736 (2019).
Google Scholar
Coleman, B. R., Martin, A. R., Thevathasan, N. V., Gordon, A. M. & Isaac, M. E. Leaf trait variation and decomposition in short-rotation woody biomass crops under agroforestry management. Agric. Ecosyst. Environ. 298, 106971 (2020).
Google Scholar
Cai, C. J., Fan, S. H., Liu, G. L., Wang, S. M. & Feng, Y. Research and development advance of compound management of bamboo forests. World Bamboo Rattan 16(5), 47–52 (2018) (in Chinese).
Song, Z. et al. Characteristics of Se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol. Trace Elem. Res. 113(1), 81–89 (2009).
Google Scholar
Wang, Q. et al. Effects of drying on the structural characteristics and antioxidant activities of polysaccharides from Stropharia rugosoannulata. J. Food Sci. Technol. 58, 3622–3631 (2021).
Google Scholar
Yan, P., Jiang, J. & Cui, W. Characterization of protoplasts prepared from the edible fungus, Stropharia rugoso-annulata. World J. Microbiol. Biotechnol. 20(2), 173–177 (2004).
Google Scholar
Frouz, J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilition. Geoderma 332, 161–172 (2018).
Google Scholar
Lin, D. et al. Soil fauna promote litter decomposition but do not alter the relationship between leaf economics spectrum and litter decomposability. Soil Biol. Biochem. 136, 107519 (2019).
Google Scholar
Meehan, M. L. et al. Response of soil fauna to simulated global change factors depends on ambient climate conditions. Pedobiologia 83, 150672 (2020).
Google Scholar
Tan, B. et al. Soil fauna show different degradation patterns of lignin and cellulose along an elevational gradient. Appl. Soil Ecol. 155, 103673 (2020).
Google Scholar
John, K., Zaitsev, A. S. & Wolters, V. Soil fauna groups respond differentially to changes in crop rotation cycles in rice production systems. Pedobiologia 84, 150703 (2021).
Google Scholar
Qin, Z. et al. Changes in the soil meso- and micro-fauna community under the impacts of exotic Ambrosia artemisiifolia. Ecol. Res. 34(2), 265–276 (2019).
Google Scholar
Chauvat, M., Titsch, D., Zaytesev, A. S. & Wolters, V. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For. Ecol. Manag. 262(3), 317–324 (2011).
Google Scholar
Yan, S. et al. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 47(2), 158–165 (2012).
Google Scholar
Reeve, J. R. et al. Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J. 4, 1099–1107 (2010).
Google Scholar
Lavelle, P., Bignell, D. & Lepage, M. Soil function in a changing world: The role of invertebrate engineers. Eur. J. Soil Biol. 33, 159–193 (1997).
Google Scholar
Zhu, X. & Zhu, B. Diversity and abundance of soil fauna as influenced by long-term fertilization in cropland of purple soil, China. Soil Till. Res. 146, 39–46 (2015).
Google Scholar
Zhang, L., Wang, G. & Cao, F. The effect of ginkgo agroforestry patterns on soil fauna diversity. J. Nanjing For. Univ. 39(2), 27–32 (2015) (in Chinese).
Liu, P. et al. Impact of straw returning on cropland soil mesofauna community in the western part of black soil area. Chin. J. Ecol. 37(1), 139–146 (2018) (in Chinese).
Liu, M. Study on the model of interplanting edible fungi under bamboo (Phyllostachys edulis) forest and comprehensive benefit comparative. Master’s Thesis, Chinese Academy of Forestry (2021) (in Chinese).
Wang, B., Shen, Q., Zhu, W., Shen, X. & Li, Q. Effects of interplanting Dictyophora echinovolvata on physicochemical properties, phospholipid fatty acids characters and enzyme activities in soil of Phyllostachy heterocycla cv. pubescens. For. Environ. Sci. 32(4), 28–32 (2016) (in Chinese).
Google Scholar
Ying, G. H. et al. Effect of cultivation of Dictyophora echinovolvata on shoot yield and soil under Phyllostachy heterocycla cv. pubescens stand. J. Zhejiang For. Sci. Technol. 34(6), 65–67 (2014) (in Chinese).
Sokol, N. W. et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).
Google Scholar
Fujii, K., Hayakawa, C., Inagaki, Y. & Kosaki, T. Effects of land use change on turnover and storage of soil organic matter in a tropical forest. Plant Soil 446(1), 425–439 (2020).
Google Scholar
Fujii, K. & Toma, T. Comparison of soil acidification rates under different land uses in Indonesia. Plant Soil 465(1–2), 1–17 (2021).
Google Scholar
Poss, R., Smith, C. J., Dunin, F. X. & Angus, J. F. Rate of soil acidification under wheat in a semi-arid environment. Plant Soil 177, 85–100 (1995).
Google Scholar
Yin, X. et al. Distribution and diversity partterns of soil fauna in different salinization habitats of Songnen Grasslands, China. Appl. Soil Ecol. 123, 375–383 (2018).
Google Scholar
Luo, M. L. et al. Effects of different rice straw returning quantities on soil fauna community structure. J. Zhejiang A&F Univ. 37(1), 85–92 (2020) (in Chinese).
Peng, C. Y. et al. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantation in the upper reaches of Yangtze River. J. Zhejiang Univ. 45(5), 585–595 (2019) (in Chinese).
Carmen, M. U., Edmond, R. Z. & Michelle, M. W. Nematode indicators as integrative measures of soil condition in organic cropping systems. Soil Biol. Biochem. 64, 103–113 (2013).
Google Scholar
Kamau, S., Karanja, N. K., Ayuke, F. O. & Lehmann, J. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth. Biol. Fertil. Soils 55(7), 661–673 (2019).
Google Scholar
Fu, X., Shao, M., Wei, X. & Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155(1–2), 31–35 (2010).
Google Scholar
Guan, F., Tang, X., Fan, S., Zhao, J. & Peng, C. Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and Moso bamboo plantations. Catena 133, 455–460 (2015).
Google Scholar
Liu, Y. et al. Higher soil fauna abundance accelerates litter carbon release across an alpine forest-tundra ecotone. Sci. Rep. 9, 10561 (2019).
Google Scholar
Source: Ecology - nature.com