in

Phylogeography and colonization pattern of subendemic round-leaved oxeye daisy from the Dinarides to the Carpathians

  • Pax, F. Grundzüge der Pflanzenverbreitung in den Karpathen. 1–342 (W. Engelmann, 1898). https://doi.org/10.5962/bhl.title.20419.

  • Popov [Попов], M. G. [М. Г.]. Ocherk rastitel’nosti i flory Karpat [Очерк растительности и флоры Карпат]. vol. 5 (XIII) (Izdatel’stvo Moskovskogo Obshchestva Ispytateley Prirody [Издательство Московского Общества Испытателей Природы], 1949).

  • Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559 (2016).

    Article 

    Google Scholar 

  • Breman, E. et al. Conserving the endemic flora of the Carpathian Region: An international project to increase and share knowledge of the distribution, evolution and taxonomy of Carpathian endemics and to conserve endangered species. Plant Syst. Evol. 306, 59 (2020).

    Article 

    Google Scholar 

  • Bálint, M. et al. The Carpathians as a Major Diversity Hotspot in Europe. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds. Zachos, F. E. & Habel, J. C.) 189–205 (Springer, 2011). https://doi.org/10.1007/978-3-642-20992-5_11.

  • Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hurdu, B. et al. Patterns of plant endemism in the Romanian Carpathians (South-Eastern Carpathians). Contrib. Bot. 47, 25–38 (2012).

    Google Scholar 

  • Pawłowski, B. Remarques sur l’endemisme dans la flore des Alpes et des Carpates. Plant Ecol. 21, 181–243 (1970).

    Article 

    Google Scholar 

  • Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 373–389 (2011).

  • Hendrych, R. Primula vulgaris in der Slowakei und in den umliegenden Gebieten. Preslia Praha 68, 135–156 (1996).

    Google Scholar 

  • Hendrych, R. & Hendrychová, H. Preliminary report on the Dacian migroelement in the flora of Slovakia. Preslia Praha 51, 313–332 (1979).

    Google Scholar 

  • Sramkó, G. „Dunántúli” közép-dunai flóraválasztós fajok a Matricum flórájában. KITAIBELIA 9, 31–56 (2004).

    Google Scholar 

  • Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics and the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. The Holocene 28, 583–594 (2018).

  • Kliment, J., Turis, P. & Janišová, M. Taxa of vascular plants endemic to the Carpathian Mts. Preslia -Praha- 88, 19–76 (2016).

    Google Scholar 

  • Konowalik, K. Reconstructing reticulate relationships in the polyploid complex of Leucanthemum Mill. (Compositae, Anthemideae). (Fakultät für Biologie und Vorklinische Medizin, Universität Regensburg, 2014).

  • Konowalik, K., Wagner, F., Tomasello, S., Vogt, R. & Oberprieler, C. Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol. Phylogenet. Evol. 92, 308–328 (2015).

  • Wagner, F. et al. ‘At the crossroads towards polyploidy’: Genomic divergence and extent of homoploid hybridization are drivers for the formation of the ox-eye daisy polyploid complex (Leucanthemum, Compositae-Anthemideae). New Phytol. 223, 2039–2053 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wagner, F., Härtl, S., Vogt, R. & Oberprieler, C. “Fix Me Another Marguerite!”: Species delimitation in a group of intensively hybridizing lineages of ox-eye daisies (Leucanthemum Mill., Compositae-Anthemideae). Mol. Ecol. 26, 4260–4283 (2017).

  • Piękoś-Mirkowa, H., Mirek, Z. & Miechowka, A. Endemic vascular plants in the Polish Tatra Mts. – distribution and ecology. Pol. Bot. Stud. 12, (1996).

  • Zelený, V. Taxonomisch-chorologische Studie über die Art Leucanthemum rotundifolium (W. K.) DC. Folia Geobot. 5, 369–400 (1970).

  • Piękoś, H. Nowy mieszaniec między Leucanthemum rotundifolium (W. et K.) DC. a L. vulgare Lam. var. alpicolum Gremli – Hybrida nova inter Leucanthemum rotundifolium (W. et K.) DC. et L. vulgare Lam. var. alpicolum Gremli. Fragm. Florist. Geobot. 16, 319–326 (1970).

  • Rogalski, M., do Nascimento Vieira, L., Fraga, H. P. & Guerra, M. P. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology. Front. Plant Sci. 6, (2015).

  • Greiner, R., Vogt, R. & Oberprieler, C. Evolution of the polyploid north-west Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) based on plastid DNA sequence variation and AFLP fingerprinting. Ann. Bot. 111, 1109–1123 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Oberprieler, C., Konowalik, K., Fackelmann, A. & Vogt, R. Polyploid speciation across a suture zone: phylogeography and species delimitation in S French Leucanthemum Mill. representatives (Compositae–Anthemideae). Plant Syst. Evol. 304, 1141–1155 (2018).

  • Oberprieler, C., Greiner, R., Konowalik, K. & Vogt, R. The reticulate evolutionary history of the polyploid NW Iberian Leucanthemum pluriflorum clan (Compositae, Anthemideae) as inferred from nrDNA ETS sequence diversity and eco-climatological niche-modelling. Mol. Phylogenet. Evol. 70, 478–491 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alexander, P. J., Rajanikanth, G., Bacon, C. D. & Bailey, C. D. Recovery of plant DNA using a reciprocating saw and silica-based columns. Mol. Ecol. Notes 7, 5–9 (2007).

    CAS 
    Article 

    Google Scholar 

  • Sang, T., Crawford, D. & Stuessy, T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 84, 1120 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Scheunert, A., Dorfner, M., Lingl, T. & Oberprieler, C. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. PLoS ONE 15, e0226234 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Timme, R. E., Kuehl, J. V., Boore, J. L. & Jansen, R. K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hall, T. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

  • Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinformatics 4, 65–69 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).

    CAS 
    Article 

    Google Scholar 

  • Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Jukes, T. H. & Cantor, C. R. Evolution of Protein Molecules. in Mammalian Protein Metabolism 21–132 (Elsevier, 1969). https://doi.org/10.1016/B978-1-4832-3211-9.50009-7.

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tamura, K., Tao, Q. & Kumar, S. Theoretical foundation of the reltime method for estimating divergence times from variable evolutionary rates. Mol. Biol. Evol. 35, 1770–1782 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tamura, K. et al. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. 109, 19333–19338 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tao, Q., Tamura, K., Mello, B. & Kumar, S. Reliable confidence intervals for reltime estimates of evolutionary divergence times. Mol. Biol. Evol. 37, 280–290 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019).

  • Mello, B., Tao, Q., Barba-Montoya, J. & Kumar, S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol. Ecol. Resour. 21, 122–136 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, wei-M. On the origin and development of Artemisia (Asteraceae) in the geological past. Bot. J. Linn. Soc. 145, 331–336 (2004).

  • Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating Gene Genealogies. in Proceedings of the 16th International Parallel and Distributed Processing Symposium 311 (IEEE Computer Society, 2002).

  • Leigh, J. W. & Bryant, D. popart: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tonkin-Hill, G., Lees, J. A., Bentley, S. D., Frost, S. D. W. & Corander, J. RhierBAPS: An R implementation of the population clustering algorithm hierBAPS. Wellcome Open Res. 3, 93 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yu, Y., Blair, C. & He, X. RASP 4: Ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ali, S. S., Yu, Y., Pfosser, M. & Wetschnig, W. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Ann. Bot. 109, 95–107 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

  • Konowalik, K. & Nosol, A. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. Sci. Rep. 11, 1482 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hamner, B., Frasco, M. & LeDell, E. Metrics: Evaluation metrics for machine learning (2018).

  • Ripley, B. & Venables, W. nnet: Feed-forward neural networks and multinomial log-linear models. (2020).

  • Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble Platform for Species Distribution Modeling. (2020).

  • Therneau, T., Atkinson, B., port, B. R. (producer of the initial R. & maintainer 1999–2017). rpart: Recursive Partitioning and Regression Trees. (2019).

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Article 

    Google Scholar 

  • Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species distribution modeling. (2017).

  • Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).

    Article 

    Google Scholar 

  • Jasiewicz, A. Rośliny naczyniowe Bieszczadów Zachodnich [The Vascular Plants of the Western Bieszczady Mts. (East Carpathians)]. Monogr. Bot. 20, 1–340 (1965).

  • Kornaś, J. Charakterystyka geobotaniczna Gorców [Caractéristique géobotanique des Gorces (Karpathes Occidentales Polonaises)]. Monogr. Bot. 3, 3–230 (1955).

    Article 

    Google Scholar 

  • de Oliveira, G., Rangel, T. F., Lima-Ribeiro, M. S., Terribile, L. C. & Diniz-Filho, J. A. F. Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography 37, 637–647 (2014).

    Article 

    Google Scholar 

  • Sobral-Souza, T., Lima-Ribeiro, M. S. & Solferini, V. N. Biogeography of Neotropical Rainforests: past connections between Amazon and Atlantic Forest detected by ecological niche modeling. Evol. Ecol. 29, 643–655 (2015).

    Article 

    Google Scholar 

  • Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37, 1084–1091 (2014).

    Google Scholar 

  • Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).

    Article 

    Google Scholar 

  • Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. 7266827510 bytes (2018) 10.5061/DRYAD.KD1D4.

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).

    Article 

    Google Scholar 

  • Wing, M. K. C. from J. et al. caret: Classification and regression training. (2019).

  • Smith, A. B. & Santos, M. J. Testing the ability of species distribution models to infer variable importance. Ecography 43, 1801–1813 (2020).

    Article 

    Google Scholar 

  • Evans, J. S., Murphy, M. A. & Ram, K. spatialEco: Spatial analysis and modelling utilities. (2021).

  • Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538 (2005).

    Article 

    Google Scholar 

  • Zhu, G., Fan, J. & Peterson, A. T. Cautions in weighting individual ecological niche models in ensemble forecasting. Ecol. Model. 448, 109502 (2021).

    Article 

    Google Scholar 

  • Hijmans, R. J. et al. raster: Geographic data analysis and modeling. (2021).

  • R Core Team. R: A language and environment for statistical computing. (2019).

  • QGIS Development Team. QGIS geographic information system. (2019).

  • Frajman, B. & Oxelman, B. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Mol. Phylogenet. Evol. 43, 140–155 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ronikier, M., Cieślak, E. & Korbecka, G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Mol. Ecol. 17, 1763–1775 (2008).

  • Ehrich, D. et al. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Mol. Ecol. 16, 2542–2559 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Šrámková, G. et al. Phylogeography and taxonomic reassessment of Arabidopsis halleri—a montane species from Central Europe. Plant Syst. Evol. 305, 885–898 (2019).

    Article 

    Google Scholar 

  • Birks & Willis, K. J. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 1, 147–160 (2008).

  • Jarčuška, B., Kaňuch, P., Naďo, L. & Krištín, A. Quantitative biogeography of Orthoptera does not support classical qualitative regionalization of the Carpathian Mountains. Biol. J. Linn. Soc. 128, 887–900 (2019).

    Article 

    Google Scholar 

  • Tadono, T. et al. Precise global DEM generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 71–76 (2014).

    Article 

    Google Scholar 

  • Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1 (2005).

    Google Scholar 


  • Source: Ecology - nature.com

    Processing waste biomass to reduce airborne emissions

    Professor Emeritus Richard “Dick” Eckaus, who specialized in development economics, dies at 96