in

Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae)

  • Moyle, P. B. Inland fishes of California (University of California Press, 2002).

    Google Scholar 

  • Moyle, P. B., Brown, L. R., Durand, J. R. & Hobbs, J. A. Delta smelt: Life history and decline of a once-abundant species in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 14, 1–28 (2016).

    Google Scholar 

  • U. S. Fish and Wildlife Service. Endangered and threatened wildlife and plants: Determination of threatened status of the Delta Smelt. Federal Regist. 58, 12854–12864 (1993).

    Google Scholar 

  • California Department of Fish and Wildlife. State and federally listed endangered and threatened animals of California. California Department of Fish and Wildlife, (The Natural Resources Agency, North Highlands, 2017).

  • Moyle, P. B. & Bennett, W. A. The future of the Delta ecosystem and its fish, Technical Appendix D. Comparing Futures for the Sacramento-San Joaquin Delta. San Francisco (CA): Public Policy Institute of California (2008).

  • Lund, J. R. et al. Comparing futures for the Sacramento-San Joaquin Delta (Public Policy Institute of California, 2010).

    Book 

    Google Scholar 

  • Moyle, P. B., Bennett, W. A., Fleenor, W. E. & Lund, J. R. Habitat variability and complexity in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 8, 1–24 (2010).

    Google Scholar 

  • Feyrer, F., Newman, K., Nobriga, M. & Sommer, T. Modeling the effects of future outflow on the abiotic habitat of an imperiled estuarine fish. Estuaries Coast. 34, 120–128 (2011).

    Article 

    Google Scholar 

  • Cloern, J. E. & Jassby, A. D. Drivers of change in estuarine-coastal ecosystems: Discoveries from four decades of study in San Francisco bay. Rev. Geophys. 50, RG4001 (2012).

    ADS 
    Article 

    Google Scholar 

  • Moyle, P. B., Hobbs, J. A. & Durand, J. R. Delta Smelt and water politics in California. Fisheries 43, 42–60 (2018).

    Article 

    Google Scholar 

  • Mahardja, B. et al. Resistance and resilience of pelagic and littoral fishes to drought in the San Francisco estuary. Ecol. Appl. 31, e02243 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Börk, K., Moyle, P., Durand, J., Hung, T.-C. & Rypel, A. L. Small populations in jeopardy: Delta smelt case study. Environ. Law Reporter 50, 10714–10722 (2020).

    Google Scholar 

  • Moyle, P. B. 2021. Experimental habitats for hatchery Delta Smelt. California WaterBlog https://californiawaterblog.com/2021/07/25/experimental-habitats-for-hatchery-delta-smelt/ (2021).

  • Jeffries, K. M. et al. Effects of high temperatures on threatened estuarine fishes during periods of extreme drought. J. Exp. Biol. 219, 1705–1716 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Bashevkin, S. M. & Mahardja, B. Seasonally variable relationships between surface water temperature and inflow in the upper San Francisco Estuary. Limnol. Oceanogr. 67, 684–702 (2022).

    ADS 
    Article 

    Google Scholar 

  • Brown, L. R. et al. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish. PLoS ONE 11, e0146724 (2015).

    Article 

    Google Scholar 

  • Kurobe, T. et al. Reproductive strategy of Delta Smelt Hypomesus transpacificus and impacts of drought on reproductive performance. PLoS ONE 17, e0264731 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lewis, L. S. et al. Otolith-based approaches indicate strong effects of environmental variation on growth of a critically endangered estuarine fish. Mar. Ecol. Prog. 676, 37–56 (2021).

    Article 

    Google Scholar 

  • Hammock, B. G. et al. Patterns and predictors of condition indices in a critically endangered fish. Hydrobiologia 849, 675–695 (2021).

    Article 

    Google Scholar 

  • Bennett, W. A. Critical assessment of the delta smelt population in the San Francisco Estuary, California. San Franc. Estuary Watershed Sci. 3(1), (2005).

  • Komoroske, L. M. et al. Ontogeny influences sensitivity to climate change stressors in an endangered fish. Conserv. Physiol. 2, cou008 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Moyle, P. B., Herbold, B., Stevens, D. E. & Miller, L. W. Life history of delta smelt in the Sacramento-San Joaquin Estuary California. Trans. Am. Fish. Soc. 121, 67–77 (1992).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(1992)1212.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%281992%29121%3C0067%3ALHASOD%3E2.3.CO%3B2″ aria-label=”Article reference 22″>Article 

    Google Scholar 

  • Kimmerer, W. J., MacWilliams, M. L. & Gross, E. S. Variation of fish habitat and extent of the low-salinity zone with freshwater flow in the San Francisco Estuary. San Franc. Estuary Watershed Sci. 11 (2013).

  • Sommer, T. & Meija, F. A place to call home: A synthesis of delta smelt habitats in the upper San Francisco Estuary. San Franc. Estuary Watershed Sci. 9 (2013).

  • Hammock, B. G. et al. Foraging and metabolic consequences of semi-anadromy for an endangered estuarine fish. PLoS ONE 12, e0173497 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cox, D. Effects of three heating rates on the critical thermal maximum of Bluegill. In W Gibbons, R Sharitz, eds, Thermal Ecology. National Technical Information Service, 158–163 (Springfield, IL, 1974).

  • Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).

    Article 

    Google Scholar 

  • Davis, B. E. et al. Sensitivities of an endemic, endangered California smelt and two non-native fishes to serial increases in temperature and salinity: Implications for shifting community structure with climate change. Conserv. Physiol. 7, coy076 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Swanson, C., Reid, T., Young, P. S. & Cech, J. J. Jr. Comparative environmental tolerances of threatened delta smelt (Hypomesus transpacificus) and introduced wakasagi (H. nipponensis) in an altered California estuary. Oecologia 123, 384–390 (2000).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hammock, B. G., Hobbs, J. A., Slater, S. B., Acuña, S. & Teh, S. J. Contaminant and food limitation stress in an endangered estuarine fish. Sci. Total Environ. 532, 316–326 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hamilton, S. A. & Murphy, D. D. Analysis of limiting factors across the life cycle of delta smelt (Hypomesus transpacificus). Environ. Manage. 62, 365–382 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Feyrer, F., Nobriga, M. L. & Sommer, T. R. Multidecadal trends for three declining fish species: Habitat patterns and mechanisms in the San Francisco Estuary, California USA. Can. J. Fish. Aquat. Sci. 64, 723–734 (2007).

    Article 

    Google Scholar 

  • Nobriga, M. L., Sommer, T. R., Feyrer, F. & Fleming, K. Long-term trends in summertime habitat suitability for delta smelt (Hypomesus transpacificus). San Franc. Estuary Watershed Sci. 6(1), (2008).

  • Brown, L. R. et al. Implications for future survival of delta smelt from four climate change scenarios for the Sacramento-San Joaquin Delta California. Estuaries Coast. 36, 754–774 (2013).

    CAS 
    Article 

    Google Scholar 

  • Moyle, P., Kiernan, J. D., Crain, P. K. & Quiñones, R. M. Climate change vulnerability of native and alien freshwater fishes of California: A systematic assessment approach. PLoS ONE 8, e63883 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bennett, W. A. & Burau, J. R. Riders on the storm: Selective tidal movements facilitate the spawning migration of threatened Delta Smelt in the San Francisco Estuary. Estuaries Coast. 38, 826–835 (2015).

    Article 

    Google Scholar 

  • Hirvonen, H., Ranta, E., Piironen, J., Laurila, A. & Peuhkuri, N. Behavioral responses of naive Arctic charr to chemical cues from salmonid and non-salmonid fish. Oikos 88, 191–199 (2000).

    Article 

    Google Scholar 

  • Correia, A. M., Bandeira, N. & Anastacio, P. M. Influence of chemical and visual stimuli in food-search behaviour of Procambarus clarkii under clear conditions. Mar. Freshw. Behav. Physiol. 40, 189–194 (2007).

    CAS 
    Article 

    Google Scholar 

  • Nay, T. J. et al. Habitat complexity influences selection of thermal environment in a common coral reef fish. Conserv. Physiol. 8, coaa070 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Horning, W. B. & Weber, C. I. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms. EPA/600/4-85/014, 58–75 (1985).

  • Lindberg, J. et al. Aquaculture methods for a genetically managed population of endangered delta smelt. N. Am. J. Aquac. 75, 186–196 (2013).

    Article 

    Google Scholar 

  • Ferrari, M. C. O. et al. Effects of turbidity and an invasive waterweed on predation by introduced largemouth bass. Environ. Biol. Fishes 97, 79–90 (2014).

    Article 

    Google Scholar 

  • Petersen, M. F. & Steffensen, T. F. Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J. Exp. Biol. 206, 359–364 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meager, J. J. & Utne-Palm, A. C. Effect of turbidity on habitat preference of juvenile Atlantic cod Gadus morhua. Environ. Biol. Fishes 81, 149–155 (2008).

    Article 

    Google Scholar 

  • Serrano, X., Grosell, M. & Serafy, J. E. Salinity selection and preference of the grey snapper Lutjanus griseus: Field and laboratory observations. J. Fish Biol. 76, 1592–1608 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stol, J. A., Svendsen, J. C. & Enders, E. C. Determining the thermal preferences of Carmine Shiner (Notropis percobromus) and Lake Sturgeon (Acipenser fulvescens) using an automated shuttlebox. Can. Tech. Rep. Fish. Aquat. Sci. 3038 (2013).

  • Hammock, B. G. et al. The health and condition responses of delta smelt to fasting: A time series experiment. PLoS ONE 15, e0239358 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McElreath, R. Statistical rethinking: A Bayesian course with examples in R and Stan. (CRC Press, 2016.

  • R Core Team. R: A language and environment for statistical computing (2021).

  • Bates, D., Maechler, M. & Bolker, B. lme4: Linear mixed-effects models using S4 classes (2012).

  • Korner-Nievergelt, F. et al. Bayesian data analysis in ecology using linear models with R (Elsevier, 2015).

    Google Scholar 

  • Gilliam, J. F. & Fraser, D. F. Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68, 1856–1862 (1987).

    PubMed 
    Article 

    Google Scholar 

  • Metcalfe, N. B., Fraser, N. H. & Burns, M. D. Food availability and the nocturnal vs. diurnal foraging trade-off in juvenile salmon. J. Anim. Ecol. 68, 371–381 (1999).

    Article 

    Google Scholar 

  • Walters, C. J. & Juanes, F. Recruitment limitation as a consequence of natural selection for use of restricted feeding habitats and predation risk taking by juvenile fishes. Can. J. Fish. Aquat. Sci. 50, 2058–2070 (1993).

    Article 

    Google Scholar 

  • Bull, H. O. Studies on conditioned responses in fishes. Part VII. Temperature perception in teleosts. J. Mar. Biol. Assoc. U. K. 21, 1–27 (1936).

    Article 

    Google Scholar 

  • Steffel, S., Magnuson, J. J., Dizon, A. E. & Neill, W. H. Temperature discrimination by captive free-swimming tuna Euthynnus affinis. Trans. Am. Fish. Soc. 105, 588–591 (1976).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(1976)1052.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%281976%29105%3C588%3ATDBCFT%3E2.0.CO%3B2″ aria-label=”Article reference 57″>Article 

    Google Scholar 

  • Dülger, N. et al. Thermal tolerance of European Sea bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. J. Therm. Biol. 37, 79–82 (2012).

    Article 

    Google Scholar 

  • Hung, T.-C. et al. A pilot study of the performance of captive-reared delta smelt Hypomesus transpacificus in a semi-natural environment. J. Fish Biol. 95, 1517–1522 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Navarro, I. & Gutiérrez, J. Fasting and starvation. Biochemistry and molecular biology of fishes. 4: Elsevier. p. 393–434 (1995).

  • Finger, A. J. et al. A conservation hatchery population of Delta Smelt shows evidence of genetic adaptation to captivity after 9 generations. J. Hered. 109, 689–699 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Middaugh, D. P., Davis, W. R. & Yokum, R. L. The response of larval fish, Leiostomus xanthurus, to environmental stress following sublethal cadmium exposure. Contrib. Mar. Sci. 19, 13–19 (1975).

    CAS 

    Google Scholar 

  • Stevens, E. D. & Sutterlin, A. M. Heat transfer between fish and ambient water. J. Exp. Biol. 65, 131–145 (1976).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Beitinger, T. L., Thommes, M. M. & Spigarelli, S. A. Relative roles of conduction and convection in the body temperature change of gizzard shad Dorosoma cepedianum. Comp. Biochem. Physiol. 57A, 275–279 (1977).

    Article 

    Google Scholar 

  • Neill, W. H. & Magnuson, J. J. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluents from a power plant at Lake Monona Wisconsin. Trans. Am. Fish. Soc. 103, 663–710 (1974).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(1974)1032.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%281974%29103%3C663%3ADEABTO%3E2.0.CO%3B2″ aria-label=”Article reference 65″>Article 

    Google Scholar 

  • Coutant, C. C. Temperature selection by fish–a factor in power plant impact assessments. pp. 575–597. In: Environmental Effects of Cooling Systems at Nuclear Power Plants, Internat. Atomic Energy Agency, Vienna (1975).

  • Richards, F. P., Reynolds, W. W. & McCauley, R. W. Temperature preference studies in environmental impact assessment: An overview with procedural recommendations. J. Fish. Res. Board Can. 34, 728–761 (1977).

    Article 

    Google Scholar 

  • Swanson, C., Mager, R. C., Doroshov, S. I. & Cech, J. J. Jr. Use of salts, anesthetics, and polymers to minimize handling and transport mortality in delta smelt. Trans. Am. Fish. Soc. 125, 326–329 (1996).

    CAS 
    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(1996)1252.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%281996%29125%3C0326%3AUOSAAP%3E2.3.CO%3B2″ aria-label=”Article reference 68″>Article 

    Google Scholar 

  • Komoroske, L. M. et al. Sublethal salinity stress contributes to habitat limitation in an endangered estuarine fish. Evol. Appl. 9, 963–981 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Feyrer, F., Sommer, T. & Harrell, W. Importance of flood dynamics versus intrinsic physical habitat in structuring fish communities: Evidence from two adjacent engineered floodplains on the Sacramento river California. N. Am. J. Aquac. 26, 408–417 (2006).

    Google Scholar 


  • Source: Ecology - nature.com

    Ancient marine sediment DNA reveals diatom transition in Antarctica

    Small eddies play a big role in feeding ocean microbes