in

Silvopastoral systems and remnant forests enhance carbon storage in livestock-dominated landscapes in Mexico

  • Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Phelps, L. N. & Kaplan, J. O. Land use for animal production in global change studies: Defining and characterizing a framework. Glob. Change Biol. 23, 4457–4471 (2017).

    ADS 
    Article 

    Google Scholar 

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Knorr, W., Prentice, I. C., House, J. & Holland, E. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. 114, 9575–9580 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    ADS 
    Article 

    Google Scholar 

  • Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 1–11 (2020).

    Article 

    Google Scholar 

  • Zomer, R. J. et al. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 6, 1–12 (2016).

    Article 

    Google Scholar 

  • De Stefano, A. & Jacobson, M. G. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor. Syst. 92, 285–299 (2018).

    Google Scholar 

  • Bossio, D. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Article 

    Google Scholar 

  • England, J. R., O’Grady, A. P., Fleming, A., Marais, Z. & Mendham, D. Trees on farms to support natural capital: An evidence-based review for grazed dairy systems. Sci. Total Environ. 704, 135345 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, Z., Chen, H. Y., Bork, E. W., Carlyle, C. N. & Chang, S. X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 29, 1817–1828 (2020).

    Article 

    Google Scholar 

  • FAOSTAT. Data/Inputs/land use. In: Food Agriculture Organization. http://www.fao.org/faostat/en/#data/RL. (2020). Accessed 12 Sept 2020.

  • Shukla, P. R. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (Intergovernmental Panel on Climate Change, 2019).

  • Galdino, S. et al. Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 27, 773–784 (2016).

    Article 

    Google Scholar 

  • Stanimirova, R. et al. Sensitivity of global pasturelands to climate variation. Earth’s Future 7, 1353–1366 (2019).

    ADS 
    Article 

    Google Scholar 

  • Tolimir, M. et al. The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Sci. Rep. 10, 1–12 (2020).

    Article 

    Google Scholar 

  • Mendoza-Ponce, A., Corona-Núñez, R., Kraxner, F., Leduc, S. & Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Change. 53, 12–23 (2018).

    Article 

    Google Scholar 

  • Castillo-Santiago, M., Hellier, A., Tipper, R. & De Jong, B. Carbon emissions from land-use change: An analysis of causal factors in Chiapas, Mexico. Mitig. Adapt. Strat. Glob. Change 12, 1213–1235 (2007).

    Article 

    Google Scholar 

  • Kolb, M. & Galicia, L. Scenarios and story lines: drivers of land use change in southern Mexico. Environ. Dev. Sustain. 20, 681–702 (2018).

    Article 

    Google Scholar 

  • Aryal, D. R. et al. Biomass accumulation in forests with high pressure of fuelwood extraction in Chiapas, Mexico. Revista Árvore 42, e420307 (2018).

    Article 

    Google Scholar 

  • Aryal, D. R. et al. Soil organic carbon depletion from forests to grasslands conversion in Mexico: A review. Agriculture 8, 181 (2018).

    CAS 
    Article 

    Google Scholar 

  • Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chapman, M. et al. Large climate mitigation potential from adding trees to agricultural lands. Glob. Change Biol. 26, 4357–4365 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).

    Article 

    Google Scholar 

  • Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S. & Khan, M. L. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci. Rep. 10, 1–15 (2020).

    Article 

    Google Scholar 

  • Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. 111, 3709–3714 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Resende, L. O. et al. Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agroforestry Syst. 94, 893–903 (2020).

    Article 

    Google Scholar 

  • Sans, G. H. C., Verón, S. R. & Paruelo, J. M. Forest strips increase connectivity and modify forests’ functioning in a deforestation hotspot. J. Environ. Manage. 290, 112606 (2021).

    Article 

    Google Scholar 

  • Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lawson, G., Dupraz, C. & Watté, J. Can silvoarable systems maintain yield, resilience, and diversity in the face of changing environments? in Agroecosystem Diversity 145–168 (Elsevier, 2019).

  • Ramakrishnan, S. et al. Silvopastoral system for resilience of key soil health indicators in semi-arid environment. Arch. Agron. Soil Sci. 67, 1834–1847 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gerber, P. J. et al. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities (Food and Agriculture Organization of the United Nations (FAO), 2013).

    Google Scholar 

  • Haberl, H. Method précis: Human appropriation of net primary production (HANPP). In Social Ecology. Society-Nature Relations across Time and Space (eds Haberl, H. et al.) 332–334 (Springer Nature, 2016).

    Google Scholar 

  • Smith, P. et al. Global change pressures on soils from land use and management. Glob. Change Biol. 22, 1008–1028 (2016).

    ADS 
    Article 

    Google Scholar 

  • Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change. 6, 452–461 (2016).

    ADS 
    Article 

    Google Scholar 

  • Lorenz, K. & Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Develop. 34, 443–454 (2014).

    CAS 
    Article 

    Google Scholar 

  • Michalk, D. L. et al. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 30, 561–573 (2019).

    Article 

    Google Scholar 

  • Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    ADS 
    Article 

    Google Scholar 

  • Pinheiro, F. M., Nair, P. R., Nair, V. D., Tonucci, R. G. & Venturin, R. P. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. J. Environ. Manage. 299, 113676 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jose, S., Walter, D. & Kumar, B. M. Ecological considerations in sustainable silvopasture design and management. Agrofor. Syst. 93, 317–331 (2019).

    Article 

    Google Scholar 

  • Oldfield, E. E. et al. Crediting agricultural soil carbon sequestration. Science 375, 1222–1225 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Udawatta, R. P., Walter, D. & Jose, S. Carbon sequestration by forests and agroforests: A reality check for the United States. Carbon Footprints 1, 8 (2022).

    Article 

    Google Scholar 

  • Adame-Castro, D. E. et al. Diurnal and seasonal variations on soil CO2 fluxes in tropical silvopastoral systems. Soil Use Manag. 36, 671–681 (2020).

    Article 

    Google Scholar 

  • Contosta, A. R., Asbjornsen, H., Orefice, J., Perry, A. & Smith, R. G. Climate consequences of temperate forest conversion to open pasture or silvopasture. Agric. Ecosyst. Environ. 333, 107972 (2022).

    CAS 
    Article 

    Google Scholar 

  • Vargas-Zeppetello, L. R. et al. Consistent cooling benefits of silvopasture in the tropics. Nat. Commun. 13, 1–9 (2022).

    Google Scholar 

  • Casanova-Lugo, F. et al. Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangel. Ecol. Manage. 80, 31–38 (2022).

    Article 

    Google Scholar 

  • Valenzuela Que, F. G. et al. Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use Manag. 38, 1237–1249 (2022).

    Article 

    Google Scholar 

  • Nair, P. R. Classification of agroforestry systems. Agrofor. Syst. 3, 97–128 (1985).

    Article 

    Google Scholar 

  • Somarriba, E., Kass, D. & Ibrahim, M. Definition and classification of agroforestry systems. Agroforestry Prototypes for Belize. Agroforestry Project. CATIE (Tropical Agricultural Research and Higher Education Center), Costa rica 3 (1998).

  • Schroth, G. et al. Agroforestry and Biodiversity Conservation in Tropical Landscapes (Island Press, 2004).

    Google Scholar 

  • Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. 16, 1986–1999 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Cardinael, R., Mao, Z., Chenu, C. & Hinsinger, P. Belowground functioning of agroforestry systems: Recent advances and perspectives. Plant Soil. 1–13 (2020).

  • Ibrahim, M. & Beer, J. Agroforestry Prototypes for Belize Vol. 28 (CATIE, 1998).

    Google Scholar 

  • Ibrahim, M., Villanueva, C., Casasola, F. & Rojas, J. Sistemas silvopastoriles como una herramienta para el mejoramiento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Pastos y Forrajes 29, 383–419 (2006).

    Google Scholar 

  • Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Van Zanten, H. H. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).

    ADS 
    Article 

    Google Scholar 

  • Torres, C. M. M. E. et al. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Sci. Rep. 7, 1–7 (2017).

    Article 

    Google Scholar 

  • Haile, S. G., Nair, V. D. & Nair, P. R. Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob. Change Biol. 16, 427–438 (2010).

    ADS 
    Article 

    Google Scholar 

  • Chatterjee, N., Nair, P. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67 (2018).

    Article 

    Google Scholar 

  • Aynekulu, E. et al. Carbon storage potential of silvopastoral systems of Colombia. Land 9, 309 (2020).

    Article 

    Google Scholar 

  • Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above-and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Dahlsjö, C. A. et al. The local impact of macrofauna and land-use intensity on soil nutrient concentration and exchangeability in lowland tropical Peru. Biotropica 52, 242–251 (2020).

    Article 

    Google Scholar 

  • Vizcaíno-Bravo, Q., Williams-Linera, G. & Asbjornsen, H. Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic Appl. Ecol. 44, 24–34 (2020).

    Article 

    Google Scholar 

  • Villanueva-López, G., Martínez-Zurimendi, P., Ramírez-Avilés, L., Aryal, D. R. & Casanova-Lugo, F. Live fences reduce the diurnal and seasonal fluctuations of soil CO 2 emissions in livestock systems. Agron. Sustain. Dev. 36, 23 (2016).

    Article 

    Google Scholar 

  • López-Santiago, J. G. et al. Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Syst. 93, 199–211 (2019).

    Article 

    Google Scholar 

  • Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R. & Morales-Ruiz, D. E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Syst. 93, 213–227 (2019).

    Article 

    Google Scholar 

  • Beckert, M. R., Smith, P., Lilly, A. & Chapman, S. J. Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agrofor. Syst. 90, 371–383 (2016).

    Article 

    Google Scholar 

  • Cárdenas, A., Moliner, A., Hontoria, C. & Ibrahim, M. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor. Syst. 93, 229–239 (2019).

    Article 

    Google Scholar 

  • Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Amézquita, M. C., Ibrahim, M., Llanderal, T., Buurman, P. & Amézquita, E. Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J. Sustain. For. 21, 31–49 (2004).

    Article 

    Google Scholar 

  • Rosenstock, T. S. et al. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agric. Ecosyst. Environ. 284, 106569 (2019).

    Article 

    Google Scholar 

  • Junior, M. A. L., Fracetto, F. J. C., da Silva Ferreira, J., Silva, M. B. & Fracetto, G. G. M. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. CATENA 189, 104508 (2020).

    Article 

    Google Scholar 

  • Villanueva-Partida, C. et al. Influence of the density of scattered trees in pastures on the structure and species composition of tree and grass cover in southern Tabasco, Mexico. Agric. Ecosyst. Environ. 232, 1–8 (2016).

    Article 

    Google Scholar 

  • Morantes-Toloza, J. L. & Renjifo, L. M. Live fences in tropical production systems: A global review of uses and perceptions. Rev. Biol. Trop. 66, 739–753 (2018).

    Article 

    Google Scholar 

  • MoralesRuiz, D. E. et al. Carbon contents and fine root production in tropical silvopastoral systems. Land Degrad. Develop. 32, 738–756 (2021).

    Article 

    Google Scholar 

  • Hoosbeek, M. R., Remme, R. P. & Rusch, G. M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 92, 263–273 (2018).

    Google Scholar 

  • Aryal, D. R. et al. Fine wood decomposition rates decline with the sge of tropical successional forests in Southern Mexico: Implications to ecosystem carbon storage. Ecosystems 25, 661–677 (2022).

    CAS 
    Article 

    Google Scholar 

  • Dignac, M.-F. et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Develop. 37, 1–27 (2017).

    CAS 
    Article 

    Google Scholar 

  • Sánchez-Silva, S. et al. Fine root biomass stocks but not the production and turnover rates vary with the age of tropical successional forests in Southern Mexico. Rhizosphere 21, 100474 (2022).

    Article 

    Google Scholar 

  • Montejo-Martínez, D. et al. Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals. Agrofor. Syst. 94, 843–855 (2020).

    Article 

    Google Scholar 

  • Sánchez-Silva, S., De Jong, B. H., Aryal, D. R., Huerta-Lwanga, E. & Mendoza-Vega, J. Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. J. Trop. Ecol. 34, 364–377 (2018).

    Article 

    Google Scholar 

  • Waters, C. M., Orgill, S. E., Melville, G. J., Toole, I. D. & Smith, W. J. Management of grazing intensity in the semi-arid rangelands of Southern Australia: Effects on soil and biodiversity. Land Degrad. Dev. 28, 1363–1375 (2017).

    Article 

    Google Scholar 

  • Baldassini, P. & Paruelo, J. M. Deforestation and current management practices reduce soil organic carbon in the semi-arid Chaco, Argentina. Agric. Syst. 178, 102749 (2020).

    Article 

    Google Scholar 

  • Abdalla, M. et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 253, 62–81 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).

    ADS 
    Article 

    Google Scholar 

  • Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lim, S.-S. et al. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol. Manage. 417, 103–109 (2018).

    ADS 
    Article 

    Google Scholar 

  • Nair, P. Carbon sequestration studies in agroforestry systems: A reality-check. Agrofor. Syst. 86, 243–253 (2012).

    Article 

    Google Scholar 

  • Montagnini, F., Ibrahim, M. & Murgueitio, E. Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des tropiques 316, 3–16 (2013).

    Article 

    Google Scholar 

  • Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sarto, M. V. et al. Soil microbial community and activity in a tropical integrated crop-livestock system. Appl. Soil. Ecol. 145, 103350 (2020).

    Article 

    Google Scholar 

  • Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Bautista, F., Palacio-Aponte, G., Quintana, P. & Zinck, J. A. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135, 308–321 (2011).

    ADS 
    Article 

    Google Scholar 

  • Kaiser, M. et al. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long‐term arable and forest land use. J. Geophys. Res. Biogeosci. 117, (2012).

  • Castillo, M. S., Tiezzi, F. & Franzluebbers, A. J. Tree species effects on understory forage productivity and microclimate in a silvopasture of the Southeastern USA. Agric. Ecosyst. Environ. 295, 106917 (2020).

    Article 

    Google Scholar 

  • Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7 (2019).

    Google Scholar 

  • Grass, I. et al. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat. 1, 262–272 (2019).

    Google Scholar 

  • Orefice, J., Smith, R. G., Carroll, J., Asbjornsen, H. & Howard, T. Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agrofor. Syst. 93, 51–65 (2019).

    Article 

    Google Scholar 

  • Aryal, D. R. et al. Potencial de almacenamiento de carbono en áreas forestales en un sistema ganadero. Revista mexicana de ciencias forestales 9, 150–180 (2018).

    Article 

    Google Scholar 

  • Gobierno de la Republica. Intended Nationally Determined Contribution, Mexico. (Instituto Nacional de Ecología y Cambio Climático, Mexico City, 2015).

  • Bonilla-Moheno, M. & Aide, T. M. Beyond deforestation: Land cover transitions in Mexico. Agric. Syst. 178, 102734 (2020).

    Article 

    Google Scholar 

  • INEGI. Mapa de uso de suelo y vegetación de México: Series I–VII. Instituto Nacional de Estadística y Geografía (INEGI), Aguascalientes, Mexico. https://www.inegi.org.mx/temas/usosuelo/#Map (2018). Accessed 17 Aug 2022.

  • Gosling, E., Reith, E., Knoke, T. & Paul, C. A goal programming approach to evaluate agroforestry systems in Eastern Panama. J. Environ. Manage. 261, 110248 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Bergier, I. et al. Could bovine livestock intensification in Pantanal be neutral regarding enteric methane emissions?. Sci. Total Environ. 655, 463–472 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barkin, D. E. uso de la tierra agrícola en Mexico. Problemas del Desarrollo 12, 59–85 (1981).

    Google Scholar 

  • Valdivieso-Pérez, I. A., García-Barrios, L. E., Álvarez-Solís, D. & Nahed-Toral, J. From cornfields to grasslands: Change in the quality of soil. Terra Latinoamericana. 30, 363–374 (2012).

    Google Scholar 

  • Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • CONAFOR. Acciones Tempranas REDD+ Mexico. https://www.gob.mx/conafor/documentos/acciones-tempranas-redd (2017). Accessed 04 Oct 2020.

  • CATIE. Bidiversidad y paisajes ganaderos agrosilvopastoriles sostenibles. https://www.biopasos.com (2020). Accessed 04 Oct 2020.

  • Freire-Santos, P. Z. F., Crouzeilles, R. & Sansevero, J. B. B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manage. 433, 140–145 (2019).

    Article 

    Google Scholar 

  • Zanne, A. et al. Data from: Towards a worldwide wood economics spectrum. (2009). 10.5061/dryad.234.

  • Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).

    ADS 
    Article 

    Google Scholar 

  • Bojórquez, A. et al. Improving the accuracy of aboveground biomass estimations in secondary tropical dry forests. For. Ecol. Manage. 474, 118384 (2020).

    Article 

    Google Scholar 

  • Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11 (1997).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Shannon, C.E., Weaver. A Mathematical Theory of Communication Vol. 27 (University of Illinois Press, 1964).

  • Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34 (1948).

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    ADS 
    Article 

    Google Scholar 

  • Van Wagner, C. Practical Aspects of the Line Intersect Method Vol. 12 (Canadian Forestry Service, 1982).

    Google Scholar 

  • Heanes, D. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 15, 1191–1213 (1984).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The evolution of parental care in salamanders

    Simulating neutron behavior in nuclear reactors