Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).
Google Scholar
Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).
Google Scholar
Phelps, L. N. & Kaplan, J. O. Land use for animal production in global change studies: Defining and characterizing a framework. Glob. Change Biol. 23, 4457–4471 (2017).
Google Scholar
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).
Google Scholar
Knorr, W., Prentice, I. C., House, J. & Holland, E. Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298–301 (2005).
Google Scholar
Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
Google Scholar
Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl. Acad. Sci. 114, 9575–9580 (2017).
Google Scholar
Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).
Google Scholar
Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
Google Scholar
Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 1–11 (2020).
Google Scholar
Zomer, R. J. et al. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 6, 1–12 (2016).
Google Scholar
De Stefano, A. & Jacobson, M. G. Soil carbon sequestration in agroforestry systems: a meta-analysis. Agrofor. Syst. 92, 285–299 (2018).
Bossio, D. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
Google Scholar
England, J. R., O’Grady, A. P., Fleming, A., Marais, Z. & Mendham, D. Trees on farms to support natural capital: An evidence-based review for grazed dairy systems. Sci. Total Environ. 704, 135345 (2020).
Google Scholar
Ma, Z., Chen, H. Y., Bork, E. W., Carlyle, C. N. & Chang, S. X. Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis. Glob. Ecol. Biogeogr. 29, 1817–1828 (2020).
Google Scholar
FAOSTAT. Data/Inputs/land use. In: Food Agriculture Organization. http://www.fao.org/faostat/en/#data/RL. (2020). Accessed 12 Sept 2020.
Shukla, P. R. et al. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. (Intergovernmental Panel on Climate Change, 2019).
Galdino, S. et al. Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degrad. Dev. 27, 773–784 (2016).
Google Scholar
Stanimirova, R. et al. Sensitivity of global pasturelands to climate variation. Earth’s Future 7, 1353–1366 (2019).
Google Scholar
Tolimir, M. et al. The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Mendoza-Ponce, A., Corona-Núñez, R., Kraxner, F., Leduc, S. & Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Change. 53, 12–23 (2018).
Google Scholar
Castillo-Santiago, M., Hellier, A., Tipper, R. & De Jong, B. Carbon emissions from land-use change: An analysis of causal factors in Chiapas, Mexico. Mitig. Adapt. Strat. Glob. Change 12, 1213–1235 (2007).
Google Scholar
Kolb, M. & Galicia, L. Scenarios and story lines: drivers of land use change in southern Mexico. Environ. Dev. Sustain. 20, 681–702 (2018).
Google Scholar
Aryal, D. R. et al. Biomass accumulation in forests with high pressure of fuelwood extraction in Chiapas, Mexico. Revista Árvore 42, e420307 (2018).
Google Scholar
Aryal, D. R. et al. Soil organic carbon depletion from forests to grasslands conversion in Mexico: A review. Agriculture 8, 181 (2018).
Google Scholar
Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650 (2017).
Google Scholar
Chapman, M. et al. Large climate mitigation potential from adding trees to agricultural lands. Glob. Change Biol. 26, 4357–4365 (2020).
Google Scholar
Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).
Google Scholar
Kothandaraman, S., Dar, J. A., Sundarapandian, S., Dayanandan, S. & Khan, M. L. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci. Rep. 10, 1–15 (2020).
Google Scholar
Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. 111, 3709–3714 (2014).
Google Scholar
Resende, L. O. et al. Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agroforestry Syst. 94, 893–903 (2020).
Google Scholar
Sans, G. H. C., Verón, S. R. & Paruelo, J. M. Forest strips increase connectivity and modify forests’ functioning in a deforestation hotspot. J. Environ. Manage. 290, 112606 (2021).
Google Scholar
Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).
Google Scholar
Lawson, G., Dupraz, C. & Watté, J. Can silvoarable systems maintain yield, resilience, and diversity in the face of changing environments? in Agroecosystem Diversity 145–168 (Elsevier, 2019).
Ramakrishnan, S. et al. Silvopastoral system for resilience of key soil health indicators in semi-arid environment. Arch. Agron. Soil Sci. 67, 1834–1847 (2021).
Google Scholar
Gerber, P. J. et al. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities (Food and Agriculture Organization of the United Nations (FAO), 2013).
Haberl, H. Method précis: Human appropriation of net primary production (HANPP). In Social Ecology. Society-Nature Relations across Time and Space (eds Haberl, H. et al.) 332–334 (Springer Nature, 2016).
Smith, P. et al. Global change pressures on soils from land use and management. Glob. Change Biol. 22, 1008–1028 (2016).
Google Scholar
Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change. 6, 452–461 (2016).
Google Scholar
Lorenz, K. & Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Develop. 34, 443–454 (2014).
Google Scholar
Michalk, D. L. et al. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 30, 561–573 (2019).
Google Scholar
Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).
Google Scholar
Pinheiro, F. M., Nair, P. R., Nair, V. D., Tonucci, R. G. & Venturin, R. P. Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot. J. Environ. Manage. 299, 113676 (2021).
Google Scholar
Jose, S., Walter, D. & Kumar, B. M. Ecological considerations in sustainable silvopasture design and management. Agrofor. Syst. 93, 317–331 (2019).
Google Scholar
Oldfield, E. E. et al. Crediting agricultural soil carbon sequestration. Science 375, 1222–1225 (2022).
Google Scholar
Udawatta, R. P., Walter, D. & Jose, S. Carbon sequestration by forests and agroforests: A reality check for the United States. Carbon Footprints 1, 8 (2022).
Google Scholar
Adame-Castro, D. E. et al. Diurnal and seasonal variations on soil CO2 fluxes in tropical silvopastoral systems. Soil Use Manag. 36, 671–681 (2020).
Google Scholar
Contosta, A. R., Asbjornsen, H., Orefice, J., Perry, A. & Smith, R. G. Climate consequences of temperate forest conversion to open pasture or silvopasture. Agric. Ecosyst. Environ. 333, 107972 (2022).
Google Scholar
Vargas-Zeppetello, L. R. et al. Consistent cooling benefits of silvopasture in the tropics. Nat. Commun. 13, 1–9 (2022).
Casanova-Lugo, F. et al. Effect of tree shade on the yield of Brachiaria brizantha grass in tropical livestock production systems in Mexico. Rangel. Ecol. Manage. 80, 31–38 (2022).
Google Scholar
Valenzuela Que, F. G. et al. Silvopastoral systems improve carbon stocks at livestock ranches in Tabasco, Mexico. Soil Use Manag. 38, 1237–1249 (2022).
Google Scholar
Nair, P. R. Classification of agroforestry systems. Agrofor. Syst. 3, 97–128 (1985).
Google Scholar
Somarriba, E., Kass, D. & Ibrahim, M. Definition and classification of agroforestry systems. Agroforestry Prototypes for Belize. Agroforestry Project. CATIE (Tropical Agricultural Research and Higher Education Center), Costa rica 3 (1998).
Schroth, G. et al. Agroforestry and Biodiversity Conservation in Tropical Landscapes (Island Press, 2004).
Harvey, C. A. et al. Patterns of animal diversity in different forms of tree cover in agricultural landscapes. Ecol. Appl. 16, 1986–1999 (2006).
Google Scholar
Cardinael, R., Mao, Z., Chenu, C. & Hinsinger, P. Belowground functioning of agroforestry systems: Recent advances and perspectives. Plant Soil. 1–13 (2020).
Ibrahim, M. & Beer, J. Agroforestry Prototypes for Belize Vol. 28 (CATIE, 1998).
Ibrahim, M., Villanueva, C., Casasola, F. & Rojas, J. Sistemas silvopastoriles como una herramienta para el mejoramiento de la productividad y restauración de la integridad ecológica de paisajes ganaderos. Pastos y Forrajes 29, 383–419 (2006).
Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 333, 1289–1291 (2011).
Google Scholar
Van Zanten, H. H. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).
Google Scholar
Torres, C. M. M. E. et al. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Sci. Rep. 7, 1–7 (2017).
Google Scholar
Haile, S. G., Nair, V. D. & Nair, P. R. Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob. Change Biol. 16, 427–438 (2010).
Google Scholar
Chatterjee, N., Nair, P. R., Chakraborty, S. & Nair, V. D. Changes in soil carbon stocks across the Forest-Agroforest-Agriculture/Pasture continuum in various agroecological regions: A meta-analysis. Agric. Ecosyst. Environ. 266, 55–67 (2018).
Google Scholar
Aynekulu, E. et al. Carbon storage potential of silvopastoral systems of Colombia. Land 9, 309 (2020).
Google Scholar
Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above-and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).
Google Scholar
Dahlsjö, C. A. et al. The local impact of macrofauna and land-use intensity on soil nutrient concentration and exchangeability in lowland tropical Peru. Biotropica 52, 242–251 (2020).
Google Scholar
Vizcaíno-Bravo, Q., Williams-Linera, G. & Asbjornsen, H. Biodiversity and carbon storage are correlated along a land use intensity gradient in a tropical montane forest watershed, Mexico. Basic Appl. Ecol. 44, 24–34 (2020).
Google Scholar
Villanueva-López, G., Martínez-Zurimendi, P., Ramírez-Avilés, L., Aryal, D. R. & Casanova-Lugo, F. Live fences reduce the diurnal and seasonal fluctuations of soil CO 2 emissions in livestock systems. Agron. Sustain. Dev. 36, 23 (2016).
Google Scholar
López-Santiago, J. G. et al. Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agroforestry Syst. 93, 199–211 (2019).
Google Scholar
Aryal, D. R., Gómez-González, R. R., Hernández-Nuriasmú, R. & Morales-Ruiz, D. E. Carbon stocks and tree diversity in scattered tree silvopastoral systems in Chiapas, Mexico. Agroforestry Syst. 93, 213–227 (2019).
Google Scholar
Beckert, M. R., Smith, P., Lilly, A. & Chapman, S. J. Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agrofor. Syst. 90, 371–383 (2016).
Google Scholar
Cárdenas, A., Moliner, A., Hontoria, C. & Ibrahim, M. Ecological structure and carbon storage in traditional silvopastoral systems in Nicaragua. Agrofor. Syst. 93, 229–239 (2019).
Google Scholar
Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).
Google Scholar
Amézquita, M. C., Ibrahim, M., Llanderal, T., Buurman, P. & Amézquita, E. Carbon sequestration in pastures, silvo-pastoral systems and forests in four regions of the Latin American tropics. J. Sustain. For. 21, 31–49 (2004).
Google Scholar
Rosenstock, T. S. et al. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agric. Ecosyst. Environ. 284, 106569 (2019).
Google Scholar
Junior, M. A. L., Fracetto, F. J. C., da Silva Ferreira, J., Silva, M. B. & Fracetto, G. G. M. Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. CATENA 189, 104508 (2020).
Google Scholar
Villanueva-Partida, C. et al. Influence of the density of scattered trees in pastures on the structure and species composition of tree and grass cover in southern Tabasco, Mexico. Agric. Ecosyst. Environ. 232, 1–8 (2016).
Google Scholar
Morantes-Toloza, J. L. & Renjifo, L. M. Live fences in tropical production systems: A global review of uses and perceptions. Rev. Biol. Trop. 66, 739–753 (2018).
Google Scholar
MoralesRuiz, D. E. et al. Carbon contents and fine root production in tropical silvopastoral systems. Land Degrad. Develop. 32, 738–756 (2021).
Google Scholar
Hoosbeek, M. R., Remme, R. P. & Rusch, G. M. Trees enhance soil carbon sequestration and nutrient cycling in a silvopastoral system in south-western Nicaragua. Agrofor. Syst. 92, 263–273 (2018).
Aryal, D. R. et al. Fine wood decomposition rates decline with the sge of tropical successional forests in Southern Mexico: Implications to ecosystem carbon storage. Ecosystems 25, 661–677 (2022).
Google Scholar
Dignac, M.-F. et al. Increasing soil carbon storage: Mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Develop. 37, 1–27 (2017).
Google Scholar
Sánchez-Silva, S. et al. Fine root biomass stocks but not the production and turnover rates vary with the age of tropical successional forests in Southern Mexico. Rhizosphere 21, 100474 (2022).
Google Scholar
Montejo-Martínez, D. et al. Fine root density and vertical distribution of Leucaena leucocephala and grasses in silvopastoral systems under two harvest intervals. Agrofor. Syst. 94, 843–855 (2020).
Google Scholar
Sánchez-Silva, S., De Jong, B. H., Aryal, D. R., Huerta-Lwanga, E. & Mendoza-Vega, J. Trends in leaf traits, litter dynamics and associated nutrient cycling along a secondary successional chronosequence of semi-evergreen tropical forest in South-Eastern Mexico. J. Trop. Ecol. 34, 364–377 (2018).
Google Scholar
Waters, C. M., Orgill, S. E., Melville, G. J., Toole, I. D. & Smith, W. J. Management of grazing intensity in the semi-arid rangelands of Southern Australia: Effects on soil and biodiversity. Land Degrad. Dev. 28, 1363–1375 (2017).
Google Scholar
Baldassini, P. & Paruelo, J. M. Deforestation and current management practices reduce soil organic carbon in the semi-arid Chaco, Argentina. Agric. Syst. 178, 102749 (2020).
Google Scholar
Abdalla, M. et al. Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agric. Ecosyst. Environ. 253, 62–81 (2018).
Google Scholar
Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 1–8 (2015).
Google Scholar
Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).
Google Scholar
Lim, S.-S. et al. Soil organic carbon stocks in three Canadian agroforestry systems: From surface organic to deeper mineral soils. For. Ecol. Manage. 417, 103–109 (2018).
Google Scholar
Nair, P. Carbon sequestration studies in agroforestry systems: A reality-check. Agrofor. Syst. 86, 243–253 (2012).
Google Scholar
Montagnini, F., Ibrahim, M. & Murgueitio, E. Silvopastoral systems and climate change mitigation in Latin America. Bois et forêts des tropiques 316, 3–16 (2013).
Google Scholar
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).
Google Scholar
Sarto, M. V. et al. Soil microbial community and activity in a tropical integrated crop-livestock system. Appl. Soil. Ecol. 145, 103350 (2020).
Google Scholar
Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).
Google Scholar
Bautista, F., Palacio-Aponte, G., Quintana, P. & Zinck, J. A. Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology 135, 308–321 (2011).
Google Scholar
Kaiser, M. et al. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long‐term arable and forest land use. J. Geophys. Res. Biogeosci. 117, (2012).
Castillo, M. S., Tiezzi, F. & Franzluebbers, A. J. Tree species effects on understory forage productivity and microclimate in a silvopasture of the Southeastern USA. Agric. Ecosyst. Environ. 295, 106917 (2020).
Google Scholar
Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 1–7 (2019).
Grass, I. et al. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat. 1, 262–272 (2019).
Orefice, J., Smith, R. G., Carroll, J., Asbjornsen, H. & Howard, T. Forage productivity and profitability in newly-established open pasture, silvopasture, and thinned forest production systems. Agrofor. Syst. 93, 51–65 (2019).
Google Scholar
Aryal, D. R. et al. Potencial de almacenamiento de carbono en áreas forestales en un sistema ganadero. Revista mexicana de ciencias forestales 9, 150–180 (2018).
Google Scholar
Gobierno de la Republica. Intended Nationally Determined Contribution, Mexico. (Instituto Nacional de Ecología y Cambio Climático, Mexico City, 2015).
Bonilla-Moheno, M. & Aide, T. M. Beyond deforestation: Land cover transitions in Mexico. Agric. Syst. 178, 102734 (2020).
Google Scholar
INEGI. Mapa de uso de suelo y vegetación de México: Series I–VII. Instituto Nacional de Estadística y Geografía (INEGI), Aguascalientes, Mexico. https://www.inegi.org.mx/temas/usosuelo/#Map (2018). Accessed 17 Aug 2022.
Gosling, E., Reith, E., Knoke, T. & Paul, C. A goal programming approach to evaluate agroforestry systems in Eastern Panama. J. Environ. Manage. 261, 110248 (2020).
Google Scholar
Bergier, I. et al. Could bovine livestock intensification in Pantanal be neutral regarding enteric methane emissions?. Sci. Total Environ. 655, 463–472 (2019).
Google Scholar
Barkin, D. E. uso de la tierra agrícola en Mexico. Problemas del Desarrollo 12, 59–85 (1981).
Valdivieso-Pérez, I. A., García-Barrios, L. E., Álvarez-Solís, D. & Nahed-Toral, J. From cornfields to grasslands: Change in the quality of soil. Terra Latinoamericana. 30, 363–374 (2012).
Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020).
Google Scholar
CONAFOR. Acciones Tempranas REDD+ Mexico. https://www.gob.mx/conafor/documentos/acciones-tempranas-redd (2017). Accessed 04 Oct 2020.
CATIE. Bidiversidad y paisajes ganaderos agrosilvopastoriles sostenibles. https://www.biopasos.com (2020). Accessed 04 Oct 2020.
Freire-Santos, P. Z. F., Crouzeilles, R. & Sansevero, J. B. B. Can agroforestry systems enhance biodiversity and ecosystem service provision in agricultural landscapes? A meta-analysis for the Brazilian Atlantic Forest. For. Ecol. Manage. 433, 140–145 (2019).
Google Scholar
Zanne, A. et al. Data from: Towards a worldwide wood economics spectrum. (2009). 10.5061/dryad.234.
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
Google Scholar
Bojórquez, A. et al. Improving the accuracy of aboveground biomass estimations in secondary tropical dry forests. For. Ecol. Manage. 474, 118384 (2020).
Google Scholar
Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11 (1997).
Google Scholar
Shannon, C.E., Weaver. A Mathematical Theory of Communication Vol. 27 (University of Illinois Press, 1964).
Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34 (1948).
Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).
Google Scholar
Van Wagner, C. Practical Aspects of the Line Intersect Method Vol. 12 (Canadian Forestry Service, 1982).
Heanes, D. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 15, 1191–1213 (1984).
Google Scholar
Source: Ecology - nature.com