in

Ornaments are equally informative in male and female birds

  • Amundsen, T. In Animal Signals: Signalling and Signal Design in Animal Communication (eds. Espmark, Y., Amundsen, T. & Rosenqvist, G.) 133–154 (Tapir Academic Press, 2000).

  • Amundsen, T. Why are female birds ornamented? Trends Ecol. Evol. 15, 149–155 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lande, R. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305 (1980).

    PubMed 
    Article 

    Google Scholar 

  • Poissant, J., Wilson, A. J. & Coltman, D. W. Sex-specific genetic variance and the evolution of sexual size dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Nordeide, J. T., Kekäläinen, J., Janhunen, M. & Kortet, R. Female ornaments revisited—are they correlated with offspring quality? J. Anim. Ecol. 82, 26–38 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Prum, R. O. The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us (Doubleday, 2017).

  • Clark, C. J. & Rankin, D. Subtle, pervasive genetic correlation between the sexes in the evolution of dimorphic hummingbird tail ornaments. Evolution 74, 528–543 (2020).

    PubMed 
    Article 

    Google Scholar 

  • LeBas, N. R. Female finery is not for males. Trends Ecol. Evol. 21, 170–173 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. & Komdeur, J. The evolution of mutual ornamentation. Anim. Behav. 74, 657–677 (2007).

    Article 

    Google Scholar 

  • Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B 367, 2274–2293 (2012).

    Article 

    Google Scholar 

  • Hare, R. M. & Simmons, L. W. Sexual selection and its evolutionary consequences in female animals. Biol. Rev. 94, 1464–7931 (2019).

    Article 

    Google Scholar 

  • Hernández, A., Martínez-Gómez, M., Beamonte-Barrientos, R. & Montoya, B. Colourful traits in female birds relate to individual condition, reproductive performance and male-mate preferences: a meta-analytic approach. Biol. Lett. 17, 20210283 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsuboi, M., Gonzalez-Voyer, A., Höglund, J. & Kolm, N. Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evol. Ecol. 26, 171–185 (2012).

    Article 

    Google Scholar 

  • Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).

  • Doutrelant, C., Fargevieille, A. & Grégoire, A. Evolution of female coloration: what have we learned from birds in general and blue tits in particular. Adv. Study Behav. 52, 123–202 (2020).

    Article 

    Google Scholar 

  • Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771–783 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59, 138–151 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Johnstone, R. A., Rands, S. A. & Evans, M. R. Sexual selection and condition-dependence. J. Evol. Biol. 22, 2387–2394 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cotton, S., Fowler, K. & Pomiankowski, A. Heightened condition dependence is not a general feature of male eyespan in stalk-eyed flies (Diptera: Diopsidae). J. Evol. Biol. 17, 1310–1316 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • David, P. et al. Male sexual ornament size but not asymmetry reflects condition in stalk-eyed flies. Proc. R. Soc. Lond. B 265, 2211–2216 (1998).

    Article 

    Google Scholar 

  • Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zahavi, A. Mate selection-a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Meunier, J., Figueiredo Pinto, S., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).

    Article 

    Google Scholar 

  • Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • White, T. E. Structural colours reflect individual quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Taylor & Francis Inc., 1988)

  • Andersson, M. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17, 375–393 (1982).

    Article 

    Google Scholar 

  • Walther, B. A. & Clayton, D. H. Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav. Ecol. 16, 89–95 (2005).

    Article 

    Google Scholar 

  • Folstad, I. & Karter, A. K. Parasites, bright males and the immunocompetence handicap. Am. Nat. 139, 603–622 (1992).

    Article 

    Google Scholar 

  • Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. & Sorci, G. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc. R. Soc. Lond. B 274, 819–825 (2007).

    CAS 

    Google Scholar 

  • Weaver, R. J., Koch, R. E. & Hill, G. E. What maintains signal honesty in animal colour displays used in mate choice? Philos. Trans. R. Soc. B 372, 20160343 (2017).

    Article 

    Google Scholar 

  • Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huhta, E. Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84, 1793–1799 (2003).

    Article 

    Google Scholar 

  • Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 18–222 (2004).

    Article 

    Google Scholar 

  • Webster, M. S., Ligon, R. A. & Leighton, G. M. Social costs are an underappreciated force for honest signalling in animal aggregations. Anim. Behav. 143, 167–176 (2018).

    Article 

    Google Scholar 

  • Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).

    PubMed 
    Article 

    Google Scholar 

  • Promislow, D. E. L., Montgomerie, R. & Martin, T. E. Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B 250, 143–150 (1992).

    ADS 
    Article 

    Google Scholar 

  • Guindre-Parker, S. & Love, O. P. Revisiting the condition-dependence of melanin-based plumage. J. Avian Biol. 45, 29–33 (2014).

    Article 

    Google Scholar 

  • Roulin, A. & Dijkstra, C. Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity 90, 359–364 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jawor, J. M. & Breitwisch, R. Melanin ornaments, honesty, and sexual selection. Auk 120, 249–265 (2003).

    Article 

    Google Scholar 

  • Gunderson, A. R., Frame, A. M., Swaddle, J. P. & Forsyth, M. H. Resistance of melanized feathers to bacterial degradation: is it really so black and white? J. Avian Biol. 39, 539–545 (2008).

    Article 

    Google Scholar 

  • Ruiz-de-Castañeda, R., Burtt, E. H. Jr., González-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol. J. Linn. Soc. 105, 409–419 (2012).

    Article 

    Google Scholar 

  • Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution 68, 216–229 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guilford, T. & Dawkins, M. S. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1–14 (1991).

    Article 

    Google Scholar 

  • Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. The handicap process favors exaggerated, rather than reduced, sexual ornaments. Evolution 68, 2534–2549 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Peters, J. L. et al. Assessing publication bias in meta-analyses in the presence of between-study heterogeneity. J. R. Stat. Soc. Ser. A. 173, 575–591 (2010).

    MathSciNet 
    Article 

    Google Scholar 

  • Dumbacher, J. P. & Fleischer, R. C. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc. Biol. Sci. 268, 1971–1976 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jønsson, K. A., Delhey, K., Sangster, G., Ericson, P. G. P. & Irestedt, M. The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proc. R. Soc. B Biol. Sci. B 283, 20160409 (2016).

    Article 

    Google Scholar 

  • Ord, T. J. & Stuart-Fox, D. Ornament evolution in dragon lizards: multiple gains and widespread losses reveal a complex history of evolutionary change. J. Evol. Biol. 19, 797–808 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

  • O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).

    PubMed 
    Article 

    Google Scholar 

  • LeBas, N. R., Hockham, L. R. & Ritchie, M. G. Nonlinear and correlational sexual selection on ‘honest’ female ornamentation. Proc. R. Soc. Lond. B 270, 2159–2165 (2003).

    Article 

    Google Scholar 

  • Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rohatgi, A. WebPlotDigitizer. Software version 4.5. https://automeris.io/WebPlotDigitizer (2000).

  • Sidney, S. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill,1956).

  • Friedman, H. Simplified determination of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 42, 521–526 (1982).

    Article 

    Google Scholar 

  • Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B 363, 399–410 (2008).

    Article 

    Google Scholar 

  • Brown, M. E. In Current Ornithology (eds. Nolan, V. & Ketterson, E. D.) 67–135 (Plenum Press, 1996).

  • Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22 (2012).

    Article 

    Google Scholar 

  • Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol. Lett. 20, 1869–1884 (2018).

    Article 

    Google Scholar 

  • Arnholt, A. T. & Evans, B. BSDA: Basic statistics and data analysis. R package version 1.2.0. https://cran.r-project.org/package=BSDA (2017).

  • Jackson, D., White, I. R., Price, M., Copas, J. & Riley, R. D. Borrowing of strength and study weights in multivariate and network meta-analysis. Stat. Methods Med. Res. 26, 2853–2868 (2017).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar 

  • Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

    Article 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modeling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).

    Article 

    Google Scholar 

  • Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 

    Google Scholar 

  • Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).

    Article 

    Google Scholar 

  • Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).

    Article 

    Google Scholar 

  • Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World (Cornell Laboratory of Ornithology, 2000).


  • Source: Ecology - nature.com

    New process could enable more efficient plastics recycling

    Spatial structure of city population growth