Amundsen, T. In Animal Signals: Signalling and Signal Design in Animal Communication (eds. Espmark, Y., Amundsen, T. & Rosenqvist, G.) 133–154 (Tapir Academic Press, 2000).
Amundsen, T. Why are female birds ornamented? Trends Ecol. Evol. 15, 149–155 (2000).
Google Scholar
Lande, R. Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34, 292–305 (1980).
Google Scholar
Poissant, J., Wilson, A. J. & Coltman, D. W. Sex-specific genetic variance and the evolution of sexual size dimorphism: a systematic review of cross-sex genetic correlations. Evolution 64, 97–107 (2009).
Google Scholar
Nordeide, J. T., Kekäläinen, J., Janhunen, M. & Kortet, R. Female ornaments revisited—are they correlated with offspring quality? J. Anim. Ecol. 82, 26–38 (2013).
Google Scholar
Prum, R. O. The Evolution of Beauty: How Darwin’s Forgotten Theory of Mate Choice Shapes the Animal World and Us (Doubleday, 2017).
Clark, C. J. & Rankin, D. Subtle, pervasive genetic correlation between the sexes in the evolution of dimorphic hummingbird tail ornaments. Evolution 74, 528–543 (2020).
Google Scholar
LeBas, N. R. Female finery is not for males. Trends Ecol. Evol. 21, 170–173 (2006).
Google Scholar
Kraaijeveld, K., Kraaijeveld-Smit, F. J. L. & Komdeur, J. The evolution of mutual ornamentation. Anim. Behav. 74, 657–677 (2007).
Google Scholar
Tobias, J. A., Montgomerie, R. & Lyon, B. E. The evolution of female ornaments and weaponry: social selection, sexual selection and ecological competition. Philos. Trans. R. Soc. B 367, 2274–2293 (2012).
Google Scholar
Hare, R. M. & Simmons, L. W. Sexual selection and its evolutionary consequences in female animals. Biol. Rev. 94, 1464–7931 (2019).
Google Scholar
Hernández, A., Martínez-Gómez, M., Beamonte-Barrientos, R. & Montoya, B. Colourful traits in female birds relate to individual condition, reproductive performance and male-mate preferences: a meta-analytic approach. Biol. Lett. 17, 20210283 (2021).
Google Scholar
Tsuboi, M., Gonzalez-Voyer, A., Höglund, J. & Kolm, N. Ecology and mating competition influence sexual dimorphism in Tanganyikan cichlids. Evol. Ecol. 26, 171–185 (2012).
Google Scholar
Andersson, M. Sexual Selection (Princeton Univ. Press, 1994).
Doutrelant, C., Fargevieille, A. & Grégoire, A. Evolution of female coloration: what have we learned from birds in general and blue tits in particular. Adv. Study Behav. 52, 123–202 (2020).
Google Scholar
Dunn, P. O., Armenta, J. K. & Whittingham, L. A. Natural and sexual selection act on different axes of variation in avian plumage color. Sci. Adv. 1, e1400155 (2015).
Google Scholar
Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. Biol. Sci. 271, 771–783 (2004).
Google Scholar
Bonduriansky, R. & Rowe, L. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59, 138–151 (2005).
Google Scholar
Johnstone, R. A., Rands, S. A. & Evans, M. R. Sexual selection and condition-dependence. J. Evol. Biol. 22, 2387–2394 (2009).
Google Scholar
Cotton, S., Fowler, K. & Pomiankowski, A. Heightened condition dependence is not a general feature of male eyespan in stalk-eyed flies (Diptera: Diopsidae). J. Evol. Biol. 17, 1310–1316 (2004).
Google Scholar
David, P. et al. Male sexual ornament size but not asymmetry reflects condition in stalk-eyed flies. Proc. R. Soc. Lond. B 265, 2211–2216 (1998).
Google Scholar
Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).
Google Scholar
Zahavi, A. Mate selection-a selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).
Google Scholar
Meunier, J., Figueiredo Pinto, S., Burri, R. & Roulin, A. Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav. Ecol. Sociobiol. 65, 559–567 (2011).
Google Scholar
Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).
Google Scholar
White, T. E. Structural colours reflect individual quality: a meta-analysis. Biol. Lett. 16, 20200001 (2020).
Google Scholar
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Taylor & Francis Inc., 1988)
Andersson, M. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17, 375–393 (1982).
Google Scholar
Walther, B. A. & Clayton, D. H. Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav. Ecol. 16, 89–95 (2005).
Google Scholar
Folstad, I. & Karter, A. K. Parasites, bright males and the immunocompetence handicap. Am. Nat. 139, 603–622 (1992).
Google Scholar
Alonso-Alvarez, C., Bertrand, S., Faivre, B., Chastel, O. & Sorci, G. Testosterone and oxidative stress: the oxidation handicap hypothesis. Proc. R. Soc. Lond. B 274, 819–825 (2007).
Google Scholar
Weaver, R. J., Koch, R. E. & Hill, G. E. What maintains signal honesty in animal colour displays used in mate choice? Philos. Trans. R. Soc. B 372, 20160343 (2017).
Google Scholar
Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).
Google Scholar
Huhta, E. Plumage brightness of prey increases predation risk: an among-species comparison. Ecology 84, 1793–1799 (2003).
Google Scholar
Tibbetts, E. A. & Dale, J. A socially enforced signal of quality in a paper wasp. Nature 432, 18–222 (2004).
Google Scholar
Webster, M. S., Ligon, R. A. & Leighton, G. M. Social costs are an underappreciated force for honest signalling in animal aggregations. Anim. Behav. 143, 167–176 (2018).
Google Scholar
Sheldon, B. C. Differential allocation: tests, mechanisms and implications. Trends Ecol. Evol. 15, 397–402 (2000).
Google Scholar
Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).
Google Scholar
Promislow, D. E. L., Montgomerie, R. & Martin, T. E. Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B 250, 143–150 (1992).
Google Scholar
Guindre-Parker, S. & Love, O. P. Revisiting the condition-dependence of melanin-based plumage. J. Avian Biol. 45, 29–33 (2014).
Google Scholar
Roulin, A. & Dijkstra, C. Genetic and environmental components of variation in eumelanin and phaeomelanin sex-traits in the barn owl. Heredity 90, 359–364 (2003).
Google Scholar
Jawor, J. M. & Breitwisch, R. Melanin ornaments, honesty, and sexual selection. Auk 120, 249–265 (2003).
Google Scholar
Gunderson, A. R., Frame, A. M., Swaddle, J. P. & Forsyth, M. H. Resistance of melanized feathers to bacterial degradation: is it really so black and white? J. Avian Biol. 39, 539–545 (2008).
Google Scholar
Ruiz-de-Castañeda, R., Burtt, E. H. Jr., González-Braojos, S. & Moreno, J. Bacterial degradability of an intrafeather unmelanized ornament: a role for feather-degrading bacteria in sexual selection? Biol. J. Linn. Soc. 105, 409–419 (2012).
Google Scholar
Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. Signaling efficacy drives the evolution of larger sexual ornaments by sexual selection. Evolution 68, 216–229 (2014).
Google Scholar
Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).
Google Scholar
Guilford, T. & Dawkins, M. S. Receiver psychology and the evolution of animal signals. Anim. Behav. 42, 1–14 (1991).
Google Scholar
Tazzyman, S. J., Iwasa, Y. & Pomiankowski, A. The handicap process favors exaggerated, rather than reduced, sexual ornaments. Evolution 68, 2534–2549 (2014).
Google Scholar
Peters, J. L. et al. Assessing publication bias in meta-analyses in the presence of between-study heterogeneity. J. R. Stat. Soc. Ser. A. 173, 575–591 (2010).
Google Scholar
Dumbacher, J. P. & Fleischer, R. C. Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc. Biol. Sci. 268, 1971–1976 (2001).
Google Scholar
Jønsson, K. A., Delhey, K., Sangster, G., Ericson, P. G. P. & Irestedt, M. The evolution of mimicry of friarbirds by orioles (Aves: Passeriformes) in Australo-Pacific archipelagos. Proc. R. Soc. B Biol. Sci. B 283, 20160409 (2016).
Google Scholar
Ord, T. J. & Stuart-Fox, D. Ornament evolution in dragon lizards: multiple gains and widespread losses reveal a complex history of evolutionary change. J. Evol. Biol. 19, 797–808 (2006).
Google Scholar
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).
O’Dea, R. E. et al. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol. Rev. 96, 1695–1722 (2021).
Google Scholar
LeBas, N. R., Hockham, L. R. & Ritchie, M. G. Nonlinear and correlational sexual selection on ‘honest’ female ornamentation. Proc. R. Soc. Lond. B 270, 2159–2165 (2003).
Google Scholar
Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).
Google Scholar
Rohatgi, A. WebPlotDigitizer. Software version 4.5. https://automeris.io/WebPlotDigitizer (2000).
Sidney, S. Nonparametric Statistics for the Behavioral Sciences (McGraw-Hill,1956).
Friedman, H. Simplified determination of statistical power, magnitude of effect and research sample sizes. Educ. Psychol. Meas. 42, 521–526 (1982).
Google Scholar
Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).
Google Scholar
Verhulst, S. & Nilsson, J. A. The timing of birds’ breeding seasons: a review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. Lond. B 363, 399–410 (2008).
Google Scholar
Brown, M. E. In Current Ornithology (eds. Nolan, V. & Ketterson, E. D.) 67–135 (Plenum Press, 1996).
Labocha, M. K. & Hayes, J. P. Morphometric indices of body condition in birds: a review. J. Ornithol. 153, 1–22 (2012).
Google Scholar
Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: a review and meta-analysis. Ecol. Lett. 20, 1869–1884 (2018).
Google Scholar
Arnholt, A. T. & Evans, B. BSDA: Basic statistics and data analysis. R package version 1.2.0. https://cran.r-project.org/package=BSDA (2017).
Jackson, D., White, I. R., Price, M., Copas, J. & Riley, R. D. Borrowing of strength and study weights in multivariate and network meta-analysis. Stat. Methods Med. Res. 26, 2853–2868 (2017).
Google Scholar
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Nakagawa, S. & De Villemereuil, P. A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Syst. Biol. 68, 632–641 (2019).
Google Scholar
Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta-analysis: a simulation study on the importance of modeling the phylogeny. Methods Ecol. Evol. 13, 383–395 (2022).
Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).
Google Scholar
Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
Google Scholar
Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).
Google Scholar
Nakagawa, S. et al. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 13, 4–21 (2022).
Google Scholar
Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).
Google Scholar
Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World (Cornell Laboratory of Ornithology, 2000).
Source: Ecology - nature.com