in

Experimental considerations of acute heat stress assays to quantify coral thermal tolerance

  • Pörtner, H. O. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Cimate (2019).

  • Genevier, L. G. C., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Chang. Biol. 25, 2338–2351 (2019).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science (80-.) 359, 80–83 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Chang. Biol. 26, 68–79 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Baker, A. C., Glynn, P. W. & Riegl, B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar. Coast. Shelf Sci. 80, 435–471 (2008).

    ADS 
    Article 

    Google Scholar 

  • Brown, B. E., Dunne, R. P., Scoffin, T. P. & Le Tissier, M. D. A. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 105, 219–230 (1994).

    ADS 
    Article 

    Google Scholar 

  • Suggett, D. J. & Smith, D. J. Interpreting the sign of coral bleaching as friend vs. foe. Glob. Chang. Biol. 17, 45–55 (2011).

    ADS 
    Article 

    Google Scholar 

  • Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).

    Article 

    Google Scholar 

  • Weis, V. M. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?: NEWS and VIEWS. Mol. Ecol. 19, 1515–1517 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science (80-.) 348, 1460–1462 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, 1–17 (2021).

    Article 

    Google Scholar 

  • Evensen, N. et al. Empirically derived thermal thresholds of four coral species along the Red Sea using a portable and standardized experimental approach. Coral Reefs 41, 239–252 (2022).

    Article 

    Google Scholar 

  • Song, M. et al. The impact of acute thermal stress on the metabolome of the black rockfish (Sebastes schlegelii). PLoS ONE 14, 1–23 (2019).

    Article 

    Google Scholar 

  • Kim, K. S. et al. Physiological responses to short-term thermal stress in mayfly (Neocloeon triangulifer) larvae in relation to upper thermal limits. J. Exp. Biol. 220, 2598–2605 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Juárez, O. E. et al. Transcriptomic and metabolic response to chronic and acute thermal exposure of juvenile geoduck clams Panopea globosa. Mar. Genomics 42, 1–13 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Pallarés, S., Arribas, P., Céspedes, V., Millán, A. & Velasco, J. Lethal and sublethal behavioural responses of saline water beetles to acute heat and osmotic stress. Ecol. Entomol. 37, 508–520 (2012).

    Article 

    Google Scholar 

  • Qin, G. et al. Temperature-induced physiological stress and reproductive characteristics of the migratory seahorse Hippocampus erectus during a thermal stress simulation. Biol. Open 7, 1–7 (2018).

    CAS 

    Google Scholar 

  • Zanuzzo, F. S., Bailey, J. A., Garber, A. F. & Gamperl, A. K. Comparative Biochemistry and Physiology, Part A The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia . Comp. Biochem. Physiol. Part A 233, 30–38 (2019).

    CAS 
    Article 

    Google Scholar 

  • Cunning, R. et al. Census of heat tolerance among Florida ’ s threatened staghorn corals finds resilient individuals throughout existing nursery populations. (2021).

  • Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).

    Article 

    Google Scholar 

  • Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl. Acad. Sci. U. S. A. 116, 10586–10591 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rose, N. H., Bay, R. A., Morikawa, M. K. & Palumbi, S. R. Polygenic evolution drives species divergence and climate adaptation in corals. Evolution (N. Y.) 72, 82–94 (2018).

    Google Scholar 

  • Thomas, L. et al. Mechanisms of thermal tolerance in reef-building corals across a fine-grained environmental mosaic: lessons from Ofu, American Samoa. Front. Mar. Sci. 4, 1–14 (2018).

    CAS 
    Article 

    Google Scholar 

  • Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Klepac, C. N. & Barshis, D. J. High-resolution in situ thermal metrics coupled with acute heat stress experiments reveal differential coral bleaching susceptibility. Coral Reefs https://doi.org/10.1007/s00338-022-02276-1 (2022).

    Article 

    Google Scholar 

  • Gardner, S. G. et al. A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biol. 15, 117 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Suggett, D. J. et al. Toward bio-optical phenotyping of reef-forming corals using light-induced fluorescence transient-fast repetition rate fluorometry. Limnol. Oceanogr. Methods https://doi.org/10.1002/lom3.10479 (2022).

    Article 

    Google Scholar 

  • Krueger, T. et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 190, 15–25 (2015).

    CAS 
    Article 

    Google Scholar 

  • Leggat, W. et al. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS ONE 6, e26687 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nitschke, M. R. et al. Utility of photochemical traits as diagnostics of thermal tolerance amongst great barrier reef corals. Front. Mar. Sci. 5, 1–18 (2018).

    Article 

    Google Scholar 

  • Warner, M. E., Fittt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. 96, 8007–8012 (1999).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fitt, W. K., Brown, B. E., Warner, M. E. & Dunne, R. P. Coral bleaching: Interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20, 51–65 (2001).

    Article 

    Google Scholar 

  • Tolosa, I., Treignier, C., Grover, R. & Ferrier-Pagès, C. Impact of feeding and short-term temperature stress on the content and isotopic signature of fatty acids, sterols, and alcohols in the scleractinian coral Turbinaria reniformis. Coral Reefs 30, 763–774 (2011).

    ADS 
    Article 

    Google Scholar 

  • Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chow, M. H., Tsang, R. H. L., Lam, E. K. Y. & Ang, P. Quantifying the degree of coral bleaching using digital photographic technique. J. Exp. Mar. Bio. Ecol. 479, 60–68 (2016).

    Article 

    Google Scholar 

  • Nielsen, J. J. V. et al. Physiological effects of heat and cold exposure in the common reef coral Acropora millepora. Coral Reefs 39, 259–269 (2020).

    Article 

    Google Scholar 

  • McLachlan, R. H., Price, J. T., Solomon, S. L. & Grottoli, A. G. Thirty years of coral heat-stress experiments: a review of methods. Coral Reefs 39, 885–902 (2020).

    Article 

    Google Scholar 

  • Edmunds, P. J. & Burgess, S. C. Correction: Size-dependent physiological responses of the branching coral Pocillopora verrucosa to elevated temperature and PCO2 (J. Exp. Biol. (2016) 219 (3896-3906) doi: 10.1242/jeb.146381). J. Exp. Biol. 221, 3896–3906 (2018).

    Article 

    Google Scholar 

  • Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pausch, R. E., Williams, D. E. & Miller, M. W. Impacts of fragment genotype, habitat, and size on outplanted elkhorn coral success under thermal stress. Mar. Ecol. Prog. Ser. 592, 109–117 (2018).

    ADS 
    Article 

    Google Scholar 

  • Shenkar, N., Fine, M. & Loya, Y. Size matters: bleaching dynamics of the coral Oculina patagonica. Mar. Ecol. Prog. Ser. 294, 181–188 (2005).

    ADS 
    Article 

    Google Scholar 

  • Middlebrook, R., Anthony, K. R. N., Hoegh-Guldberg, O. & Dove, S. Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J. Exp. Biol. 213, 1026–1034 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).

    Article 

    Google Scholar 

  • Marhoefer, S. R. et al. Signatures of adaptation and acclimatization to reef flat and slope habitats in the coral pocillopora damicornis. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.704709 (2021).

    Article 

    Google Scholar 

  • Cornwell, B. et al. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral acropora hyacinthus in palau. Elife 10, 1–15 (2021).

    Article 

    Google Scholar 

  • McClanahan, T. R. et al. Large geographic variability in the resistance of corals to thermal stress. Glob. Ecol. Biogeogr. 29, 2229–2247 (2020).

    Article 

    Google Scholar 

  • Magozzi, S. & Calosi, P. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming. Glob. Chang. Biol. 21, 181–194 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Drury, C., Manzello, D. & Lirman, D. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis. PLoS ONE 12, 1–21 (2017).

    Article 

    Google Scholar 

  • McLachlan, R. H., Dobson, K. L., Schmeltzer, E. R., Thurber, R. V. & Grottoli, A. G. A review of coral bleaching specimen collection, preservation, and laboratory processing methods. PeerJ 9, 1–21 (2021).

    Article 

    Google Scholar 

  • Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363 (2007).

    Article 

    Google Scholar 

  • Bruno, J. F. Fragmentation in Madracis mirabilis (Duchassaing and Michelotti): How common is size-specific fragment survivorship in corals?. J. Exp. Mar. Bio. Ecol. 230, 169–181 (1998).

    Article 

    Google Scholar 

  • Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).

    Article 

    Google Scholar 

  • Howlett, L., Camp, E. F., Edmondson, J., Henderson, N. & Suggett, D. J. Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. PLoS ONE 16, 1–15 (2021).

    Article 

    Google Scholar 

  • Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).

    ADS 
    Article 

    Google Scholar 

  • Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. 30, 4466–4480 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dove, S. et al. Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol. Oceanogr. 51, 1149–1158 (2006).

    ADS 
    Article 

    Google Scholar 

  • Traylor-Knowles, N., Rose, N. H., Sheets, E. A. & Palumb, S. Early tracriptional responses during heat stress in the coral Acropora hyacinthus. Biol. Bull. 232, 91–100 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schuback, N. et al. Single-turnover variable chlorophyll fluorescence as a tool for assessing phytoplankton photosynthesis and primary productivity: opportunities, caveats and recommendations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.690607 (2021).

    Article 

    Google Scholar 

  • Macadam, A., Nowell, C. J. & Quigley, K. Machine learning for the fast and accurate assessment of fitness in coral early life history. Remote Sens. 13, 1–17 (2021).

    Article 

    Google Scholar 

  • Teague, J., Willans, J., Allen, M. J., Scott, T. B. & Day, J. C. C. Applied marine hyperspectral imaging; coral bleaching from a spectral viewpoint. Spectrosc. Eur. 31, 13–17 (2019).

    CAS 

    Google Scholar 

  • Davies, S. W., Ries, J. B., Marchetti, A. & Castillo, K. D. Symbiodinium functional diversity in the Coral Siderastrea siderea Is influenced by thermal stress and reef environment, but not ocean acidification. Front. Mar. Sci. 5, 1–14 (2018).

    Article 

    Google Scholar 

  • Tang, J. et al. Increased ammonium assimilation activity in the scleractinian coral pocillopora damicornis but not its symbiont after acute heat stress. Front. Mar. Sci. 7, 1–10 (2020).

    ADS 
    Article 

    Google Scholar 

  • Sweet, M. et al. Species-specific variations in the metabolomic profiles of Acropora hyacinthus and Acropora millepora mask acute temperature stress effects in adult coral colonies. Front. Mar. Sci. 8, 1–15 (2021).

    Article 

    Google Scholar 

  • Newton, J. R., Smith-Keune, C. & Jerry, D. R. Thermal tolerance varies in tropical and sub-tropical populations of barramundi (Lates calcarifer) consistent with local adaptation. Aquaculture 308, S128–S132 (2010).

    Article 

    Google Scholar 

  • Waltham, N. J. & Sheaves, M. Acute thermal tolerance of tropical estuarine fish occupying a man-made tidal lake, and increased exposure risk with climate change. Estuar. Coast. Shelf Sci. 196, 173–181 (2017).

    ADS 
    Article 

    Google Scholar 

  • Iwabuchi, B. L. & Gosselin, L. A. Implications of acute temperature and salinity tolerance thresholds for the persistence of intertidal invertebrate populations experiencing climate change. Ecol. Evol. 10, 7739–7754 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cox, J., Schubert, A. M., Travisano, M. & Putonti, C. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-10-75 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quigley, K. M., Bay, L. K. & Willis, B. L. Temperature and water quality-related patterns in sediment-associated Symbiodinium communities impact symbiont uptake and fitness of juveniles in the genus Acropora. Front. Mar. Sci. 4, 1–17 (2017).

    Article 

    Google Scholar 

  • Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00214-3 (2021).

    Article 

    Google Scholar 

  • Cocciardi, J. M. et al. Adjustable temperature array for characterizing ecological and evolutionary effects on thermal physiology. Methods Ecol. Evol. 2019, 1339–1346 (2019).

    Article 

    Google Scholar 

  • Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).

    ADS 
    Article 

    Google Scholar 

  • Bainbridge, S. J. Temperature and light patterns at four reefs along the Great Barrier Reef during the 2015–2016 austral summer: understanding patterns of observed coral bleaching. J. Oper. Oceanogr. 10, 16–29 (2017).

    Google Scholar 

  • Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).

    ADS 
    Article 

    Google Scholar 

  • Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science (80-.) 344, 895–899 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saxby, T., Dennison, W. C. & Hoegh-Guldberg, O. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol. Prog. Ser. 248, 85–97 (2003).

    ADS 
    Article 

    Google Scholar 

  • Deschaseaux, E. S. M., Deseo, M. A., Shepherd, K. M., Jones, G. B. & Harrison, P. L. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. J. Exp. Mar. Bio. Ecol. 448, 146–148 (2013).

    CAS 
    Article 

    Google Scholar 

  • Holmes, G., Ortiz, J., Kaniewska, P. & Johnstone, R. Using three-dimensional surface area to compare the growth of two Pocilloporid coral species. Mar. Biol. 155, 421–427 (2008).

    Article 

    Google Scholar 

  • Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117 (2009).

    ADS 
    Article 

    Google Scholar 

  • Ritchie, R. J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Licthenthaler, H. K. Chlorophylls and carotenoids – pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).

    Article 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. (2020).

  • Hartig, F. & Lohse, L. Package ‘DHARMa’ residual diangonstics for hierarchical (multi-level/mixed) regression models (2021).

  • Brooks, M. E. et al. glmmTMB balances speed and flexibility among packaages for zero-inflated generalized linear mixed modelling. R Journal 9, 378–400 (2017).

    Article 

    Google Scholar 

  • Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).

    Google Scholar 

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article 

    Google Scholar 

  • Oksanen, J. et al. Vegan (2020).

  • Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    New process could enable more efficient plastics recycling

    Spatial structure of city population growth