Luiselli, L., Akani, G. & Capizzi, D. Food resource partitioning of a community of snakes in a swamp rainforest of south-eastern Nigeria. J. Zool. 246(2), 125–133. https://doi.org/10.1111/j.1469-7998.1998.tb00141.x (1998).
Google Scholar
Rouag, R., Djilali, H., Gueraiche, H. & Luiselli, L. Resource partitioning patterns between two sympatric lizard species from Algeria. J. Arid Environ. 69, 158–168. https://doi.org/10.1016/j.jaridenv.2006.08.008 (2007).
Google Scholar
Bergeron, R. & Blouin-Demers, G. Niche partitioning between two sympatric lizards in the Chiricahua Mountains of Arizona. Copeia 108(3), 570–577. https://doi.org/10.1643/CH-19-268 (2020).
Google Scholar
Lucek, K., Butlin, R. K. & Patsiou, T. Secondary contact zones of closely-related Erebia butterflies overlap with narrow phenotypic and parasitic clines. J. Evol. Biol. 33(9), 1152–1163. https://doi.org/10.1111/jeb.13669 (2020).
Google Scholar
Freeman, B. G. Competitive interaction upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186(4), 470–479. https://doi.org/10.5061/dryad.6qg3g (2015).
Google Scholar
Schoener, T. W. Resource partitioning in ecological communities. Science 185(4145), 27–39 (1974).
Google Scholar
Rivas, L. R. A Reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Syst. Zool. 13(1), 42 (1964).
Google Scholar
Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101(921), 377–385 (1967).
Google Scholar
Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8(8), 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).
Google Scholar
Holomuzki, J. R., Feminella, J. W. & Power, M. E. Biotic interactions in freshwater benthic habitats. J. N. Am. Benthol. Soc. 29(1), 220–244. https://doi.org/10.1899/08-044.1 (2010).
Google Scholar
Ferretti, F. et al. Competition between wild herbivores: Reintroduced red deer and Apennine chamois. Behav. Ecol. 26(2), 550–559. https://doi.org/10.1093/beheco/aru226 (2015).
Google Scholar
Takada, H., Yano, R., Katsumata, A., Takatsuki, S. & Minami, M. Diet compositions of two sympatric ungulates, the Japanese serow (Capricornis crispus) and the sika deer (Cervus nippon), in a montane forest and an alpine grassland of Mt. Asama central, Japan. Mamm. Biol. 101, 681–694. https://doi.org/10.1007/s42991-021-00122-5 (2021).
Google Scholar
Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001) (ISBN 9780691021287).
Bell, G. Neutral macroecology. Science 293, 2413–2418. https://doi.org/10.1126/science.293.5539.2413 (2001).
Google Scholar
Rosindell, J., Hubbel, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26(7), 340–348. https://doi.org/10.1016/j.tree.2011.03.024 (2011).
Google Scholar
Cowie, R. H. & Holland, B. S. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. 33, 193–198. https://doi.org/10.1111/j.1365-2699.2005.01383.x (2006).
Google Scholar
Amarasekare, P. & Nisbet, R. M. Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. Am. Nat. 158(6), 572–584. https://doi.org/10.1086/323586 (2001).
Google Scholar
Kumar, K., Gentile, G. & Grant, T. D. Conolophus subcristatus. The IUCN Red List of Threatened Species 2020, e.T5240A3014082 (2020). https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T5240A3014082.en
Gentile, G. Conolophus marthae. The IUCN Red List of Threatened Species 2012, e. T174472A1414375 (2012). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T174472A1414375.en
Gentile, G., Marquez, C., Snell, H. L., Tapia, W. & Izurieta, A. Conservation of a New Flagship Species: The Galápagos Pink Land Iguana (Conolophus marthae Gentile and Snell, 2009). In Problematic Wildlife: A Cross-Disciplinary Approach (ed. Angelici, F. M.) 315–336 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-22246-2_15.
Google Scholar
Gentile, G. & Snell, H. L. Conolophus marthae sp. Nov. (Squamata, iguanidae), a new species of land iguana from the Galápagos Archipelago. Zootaxa 2201, 1–10 (2009).
Google Scholar
Colosimo, G. et al. Chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus). Sci. Rep. 10(1), 14314. https://doi.org/10.1038/s41598-020-71176-7 (2020).
Google Scholar
Jackson, M. Galápagos: A Natural History, Revised and Expanded (University of Calgary Press, 1994).
Traveset, A. et al. Galápagos land iguana (Conolophus subcristatus) as a seed disperser. Integr. Zool. 11(3), 207–213. https://doi.org/10.1111/1749-4877.12187 (2016).
Google Scholar
Di Giambattista, L. et al. Molecular data exclude current hybridization between iguanas Conolophus marthae and C. subcristatus on Wolf volcano (Galápagos islands). Conserv. Genet. 19(6), 1461–1469. https://doi.org/10.1007/s10592-018-1114-3 (2018).
Google Scholar
MacLeod, A. et al. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana. Proc. R. Soc. B 282, 1–9. https://doi.org/10.1098/rspb.2015.0425 (2015).
Google Scholar
Gause, G. F. The Struggle for Existence (Williams and Wilkins Company, 1934).
Google Scholar
Hardin, G. The competitive exclusion principle. Science 131(3409), 1292–1297 (1960).
Google Scholar
Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R. & Bontadina, F. Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: Implications for conservation. Eur. J. Wildl. Res. 57, 843–849. https://doi.org/10.1007/s10344-011-0496-z (2011).
Google Scholar
Bleyhl, B. et al. Assessing niche overlap between domestic and threatened wild sheep to identify conservation priority areas. Divers. Distrib. 25(1), 129–141. https://doi.org/10.1111/ddi.12839 (2019).
Google Scholar
Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5(8), 429–436. https://doi.org/10.1890/060150.1 (2007).
Google Scholar
Riera, P., Stal, L. J. & Nieuwenhuize, J. δ13C versus δ15N of co-occurring mollusks within a community dominated by Crassostrea gigas and Crepidula ornicate (Oossterschelde, The Netherlands). Mar. Ecol. Prog. Ser. 240, 291–295 (2002).
Google Scholar
Page, B., McKenzie, J. & Goldsworthy, S. D. Dietary resources partitioning among sympatric New Zealand and Australian fur seals. Mar. Ecol. Prog. Ser. 293, 283–302 (2005).
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506 (1978).
Google Scholar
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351 (1981).
Google Scholar
Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).
Google Scholar
Crawford, K., McDonald, R. A. & Bearhop, S. Applications of stable isotope techniques to the ecology of mammals. Mammal. Rev. 38(1), 87–107. https://doi.org/10.1111/j.1365-2907.2008.00120.x (2008).
Google Scholar
Trueman, M. & d’Ozouville, N. Characterizing the Galápagos terrestrial climate in the face of global climate change. Gala Res. 67, 26–37 (2010).
Paltán, H. A. et al. Climate and sea surface trends in the Galápagos Islands. Sci. Rep. 11(1), 1–13. https://doi.org/10.1038/s41598-021-93870-w (2021).
Google Scholar
Rivas-Torres, G. F., Benítez, F. L., Rueda, D., Sevilla, C. & Mena, C. F. A methodology for mapping native and invasive vegetation coverage in archipelagos: An example from the Galápagos islands. Prog. Phys. Geogr. 42(1), 83–111. https://doi.org/10.1177/0309133317752278 (2018).
Google Scholar
Gentile, G., Ciambotta, M. & Tapia, W. Illegal wildlife trade in Galápagos: Molecular tools help taxonomic identification and guide rapid repatriation of confiscated iguanas. Conserv. Genet. Resour. 5, 867–872. https://doi.org/10.1007/s12686-013-9915-7 (2013).
Google Scholar
Stephens, R. B., Ouimette, A. P., Hobbie, E. A. & Rowe, R. J. Re-evaluating trophic discrimination factors (Δδ13C and Δδ15N) for diet reconstruction. Ecol. Mono 92, e1525. https://doi.org/10.1002/ecm.1525 (2022).
Google Scholar
Hobson, K. A. & Clark, R. G. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor 94(1), 181–188. https://doi.org/10.2307/1368807 (1992).
Google Scholar
Li, C.-H., Roth, J. D. & Detwiler, J. T. Isotopic turnover rates and diet-tissue discrimination depend on feeding habits of freshwater snails. PLoS ONE 13(7), e0199713. https://doi.org/10.1371/journal.pone.0199713 (2018).
Google Scholar
Steinitz, R., Lemm, J., Pasachnik, S. & Kurle, C. Diet-tissue stable isotope (δ13C and δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30(1), 9–21. https://doi.org/10.1002/rcm.7410 (2016).
Google Scholar
Ethier, D. M., Kyle, C. J., Kyser, T. K. & Nocera, J. J. Variability in the growth patterns of the cornified claw sheath among vertebrates: Implications for using biogeochemistry to study animal movement. Can. J. Zool. 88(11), 1043–1051. https://doi.org/10.1139/Z10-073 (2010).
Google Scholar
Aresco, M. J. & James, F. C. Ecological relationships of turtles in northern Florida lakes: A study of omnivory and the structure of a lake food web. Florida Fish and Wildlife Conservation Commission (2005). https://www.semanticscholar.org/paper/ECOLOGICAL-RELATIONSHIPS-OF-TURTLES-IN-NORTHERN-A-A-Aresco-James/f6d59265eb6494aa19cfde7d2d80bb165e6432ac
Lourenço, P. M., Granadeiro, J. P., Guilherme, J. L. & Catry, T. Turnover rates of stable isotopes in avian blood and toenails: Implications for dietary and migration studies. J. Exp. Mar. Biol. Ecol. 472, 89–96. https://doi.org/10.1016/j.jembe.2015.07.006 (2015).
Google Scholar
Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable isotope Bayesian ellipses in r. J. Animal Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).
Google Scholar
Wikelski, M. & Romero, L. M. Body size, performance and fitness in Galápagos marine iguanas. Integr Comp Biol 43(3), 376–386. https://doi.org/10.1093/icb/43.3.376 (2003).
Google Scholar
Iverson, J., Smith, G. & Pieper, L. Factors Affecting Long-Term Growth of the Allen Cays Rock Iguana in the Bahamas. In Iguanas: Biology and Conservation (eds Alberts, A. et al.) 176–192 (University of California Press, 2004). https://doi.org/10.1525/9780520930117-018.
Google Scholar
Smith, G. R. & Iverson, J. B. Effects of tourism on body size, growth, condition, and demography in the Allen Cay Iguana. Herpetol. Conserv. Biol. 11, 214–221 (2016).
Wikelski, M., Carrillo, V. & Trillmich, F. Energy limits to body size in a grazing reptile, the Galápagos Marine Iguana. Ecology 78(7), 2204–2217. https://doi.org/10.2307/2265956 (1997).
Google Scholar
Bulakhova, N. A. et al. Inter-observer and intra-observer differences in measuring body length: A test in the common lizard, Zootoca vivipara. Amphibia-Reptilia 32(4), 477–484. https://doi.org/10.1163/156853811X601636 (2011).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing (2021). https://cran.r-project.org
Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19. https://doi.org/10.18637/jss.v022.i07 (2007).
Google Scholar
Randin, C. F., Jaccard, H., Vittoz, P., Yoccoz, N. G. & Guisan, A. Land use improves spatial predictions of mountain plant abundance but not presence–absence. J. Veg. Sci. 20, 996–1008. https://doi.org/10.1111/j.1654-1103.2009.01098.x (2009).
Google Scholar
Broennimann, O., Di Cola, V. & Guisan, A. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.2.1 (2022) https://CRAN.R-project.org/package=ecospat
Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73(3), 1045–1055. https://doi.org/10.2307/1940179 (1992).
Google Scholar
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.
Google Scholar
Van Marken Lichtenbelt, W. D. Optimal foraging of a herbivorous lizard, the green iguana in a seasonal environment. Oecologia 95, 246–256. https://doi.org/10.1007/BF00323497 (1993).
Google Scholar
Pasachnik, S. A. & Martin-Velez, V. An evaluation of the diet of Cyclura iguanas in the Dominican Republic. Herpetol. Bull. 140, 6–12 (2017).
Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389(6647), 153–158. https://doi.org/10.1038/38229 (1997).
Google Scholar
O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).
Google Scholar
Snell, H. L. & Tracy, C. R. Behavioral and morphological adaptations by Galapagos land iguanas (Conolophus subcristatus) to water and energy requirements of eggs and neonates. Am. Zool. 25(4), 1009–1018. https://doi.org/10.1093/icb/25.4.1009 (1985).
Google Scholar
Christian, K., Tracy, C. R. & Porter, W. P. Diet, digestion, and food preferences of Galápagos land iguanas. Herpetologica 40(2), 205–212 (1984).
Mallona, I., Egea-Cortines, M. & Weiss, J. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Physiol. 156, 1978–1989. https://doi.org/10.1104/pp.111.179275 (2011).
Google Scholar
San Sebastián, O., Navarro, J., Llorente, G. A. & Richter-Boix, Á. Trophic strategies of a non-native and a native amphibian species in shared ponds. PLoS ONE 10(6), 1–17. https://doi.org/10.1371/journal.pone.0130549 (2015).
Google Scholar
Perga, M. E. & Grey, J. Laboratory measures of isotope discrimination factors: Comments on Caut, Angulo & Courchamp (2008, 2009). J. Appl. Ecol. 47(4), 942–947. https://doi.org/10.1111/j.1365-2664.2009.01730.x (2010).
Google Scholar
Freeman, B. Sexual niche partitioning in two species of new Guinean Pachycephala whistlers. J. Field Ornithol. 85(1), 23–30. https://doi.org/10.1111/jofo.12046 (2014).
Google Scholar
Werner, D. I. Social Organization and Ecology of Land Iguanas, Conolophus subcristatus, on Isla Fernandina, Galápagos. In Iguanas of the World: Their Behavior, Ecology, and Conservation (eds Burghardt, G. M. & Rand, A. S.) 342–365 (Noyes Publications, 1982).
Doi, H., Akamatsu, F. & González, A. L. Starvation effects on nitrogen and carbon stable isotopes of animals: An insight from meta-analysis of fasting experiments. R. Soc. Open Sci. 4(8), 170633. https://doi.org/10.1098/rsos.170633 (2017).
Google Scholar
Persaud, A., Dillon, P., Molot, L. & Hargan, K. Relationships between body size and trophic position of consumers in temperate freshwater lakes. Aquat. Sci. 74(1), 203–212. https://doi.org/10.1007/s00027-011-0212-9 (2012).
Google Scholar
Keppeler, F. W. et al. Body size, trophic position, and the coupling of different energy pathways across a saltmarsh landscape. Limnol. Oceanogr. Lett. 6(6), 360–368. https://doi.org/10.1002/lol2.10212 (2021).
Google Scholar
Hanson, J. O. et al. Feeding across the food web: The interaction between diet, movement and body size in estuarine crocodiles (Crocodylus porosus). Austral. Ecol. 40(3), 275–286. https://doi.org/10.1111/aec.12212 (2015).
Google Scholar
Gustavino, B., Terrinoni, S., Paglierani, C. & Gentile, G. Conolophus marthae vs. Conolophus subcristatus: Does the skin pigmentation pattern exert a protective role against DNA damaging effect induced by UV light exposure? Analysis of blood smears through the micronucleus test. Paper presented at the Galápagos Land and Marine Iguanas Workshop, IUCN SSC Iguana Specialist Group Meeting, Puerto Ayora, 28–29 October 2014.
Di Giacomo, C. et al. 25–Hydroxivitamin D plasma levels in natural populations of pigmented and partially pigmented land iguanas from Galápagos (Conolophus spp.). Hind 2022, 1–9. https://doi.org/10.1155/2022/7741397 (2022).
Google Scholar
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).
Google Scholar
Source: Ecology - nature.com