in

Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan

  • Hagen, O. et al. gen3sis: a general engine for eco-evolutionary simulations of the processes that shape Earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Urban, M. C. et al. Evolutionary origins for ecological patterns in space. Proc. Natl Acad. Sci. USA 117, 17482–17490 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton Univ. Press, 2001).

  • Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    PubMed 
    Article 

    Google Scholar 

  • de Aguiar, M. A. M., Baranger, M., Baptestini, E. M., Kaufman, L. & Bar-Yam, Y. Global patterns of speciation and diversity. Nature 460, 384 (2009).

    PubMed 
    Article 

    Google Scholar 

  • O’Dwyer, J. P. & Green, J. L. Field theory for biogeography: a spatially explicit model for predicting patterns of biodiversity. Ecol. Lett. 13, 87–95 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. What drives community dynamics? Proc. R. Soc. B 276, 2923–2929 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Chisholm, R. A. & O’Dwyer, J. P. Species ages in neutral biodiversity models. Theor. Popul. Biol. 93, 85–94 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Nee, S. The neutral theory of biodiversity: do the numbers add up? Funct. Ecol. 19, 173–176 (2005).

    Article 

    Google Scholar 

  • Ricklefs, R. E. A comment on Hubbell’s zero-sum ecological drift model. Oikos 100, 185–192 (2003).

    Article 

    Google Scholar 

  • Etienne, R. S., Apol, M. E. F., Olff, H. & Weissing, F. J. Modes of speciation and the neutral theory of biodiversity. Oikos 116, 241–258 (2007).

    Article 

    Google Scholar 

  • Davies, T. J., Allen, A. P., Borda-de Água, L., Regetz, J. & Melián, C. J. Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution 65, 1841–1850 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Higgs, P. G. & Derrida, B. Stochastic models for species formation in evolving populations. J. Phys. A 24, L985 (1991).

    Article 

    Google Scholar 

  • Gavrilets, S., Li, H. & Vose, M. D. Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. B 265, 1483–1489 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gavrilets, S. & Vose, A. Dynamic patterns of adaptive radiation. Proc. Natl Acad. Sci. USA 102, 18040–18045 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).

  • Gavrilets, S., Acton, R. & Gravner, J. Dynamics of speciation and diversification in a metapopulation. Evolution 54, 1493–1501 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Costa, C. L. N. et al. Signatures of microevolutionary processes in phylogenetic patterns. Syst. Biol. 68, 131–144 (2018).

    Google Scholar 

  • Li, J., Huang, J.-P., Sukumaran, J. & Knowles, L. L. Microevolutionary processes impact macroevolutionary patterns. BMC Evol. Biol. 18, 123 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Melián, C. J., Alonso, D., Allesina, S., Condit, R. S. & Etienne, R. S. Does sex speed up evolutionary rate and increase biodiversity? PLoS Comput. Biol. 8, e1002414 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018).

  • Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    PubMed 
    Article 

    Google Scholar 

  • de Alencar, L. R. V. & Quental, T. B. Linking population-level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol. Evol. 11, 5828–5843 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hurlbert, A. H. & Stegen, J. C. When should species richness be energy limited, and how would we know? Ecol. Lett. 17, 401–413 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Morlon, H. Phylogenetic approaches for studying diversification. Ecol. Lett. 17, 508–525 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Rosindell, J., Harmon, L. J. & Etienne, R. S. Unifying ecology and macroevolution with individual-based theory. Ecol. Lett. 18, 472–482 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rosindell, J. & Harmon, L. J. A unified model of species immigration, extinction and abundance on islands. J. Biogeogr. 40, 1107–1118 (2013).

    Article 

    Google Scholar 

  • Etienne, R. S. & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204–213 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rabosky, D. L. & Matute, D. R. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl Acad. Sci. USA 110, 15354–15359 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Princepe, D. & De Aguiar, M. A. M. Modeling mito-nuclear compatibility and its role in species identification. Syst. Biol. 70, 133–144 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bar-Yaacov, D., Blumberg, A. & Mishmar, D. Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochim. Biophys. Acta 1819, 1107–1111 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sunnucks, P., Morales, H. E., Lamb, A. M., Pavlova, A. & Greening, C. Integrative approaches for studying mitochondrial and nuclear genome co-evolution in oxidative phosphorylation. Front. Genet. 8, 25 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hill, G. E. The mitonuclear compatibility species concept. Auk 134, 393–409 (2017).

    Article 

    Google Scholar 

  • Lima, T. G., Burton, R. S. & Willett, C. S. Genomic scans reveal multiple mito-nuclear incompatibilities in population crosses of the copepod Tigriopus californicus. Evolution 73, 609–620 (2019).

  • Barreto, F. S. & Burton, R. S. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod. Proc. R. Soc. B https://doi.org/10.1098/rspb.2013.1521 (2013).

  • Hill, G. E. Mitonuclear compensatory coevolution. Trends Genet. 36, 403–414 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gershoni, M., Templeton, A. R. & Mishmar, D. Mitochondrial bioenergetics as a major motive force of speciation. BioEssays 31, 642–650 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hill, G. E. Mitonuclear coevolution as the genesis of speciation and the mitochondrial DNA barcode gap. Ecol. Evol. 6, 5831–5842 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tobler, M., Barts, N. & Greenway, R. Mitochondria and the origin of species: bridging genetic and ecological perspectives on speciation processes. Integr. Comp. Biol. 59, 900–911 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Burton, R. S. & Barreto, F. S. A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? Mol. Ecol. 21, 4942–4957 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Telschow, A., Gadau, J., Werren, J. H. & Kobayashi, Y. Genetic incompatibilities between mitochondria and nuclear genes: effect on gene flow and speciation. Front. Genet. 10, 62 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lane, N. Biodiversity: on the origin of bar codes. Nature 462, 272–274 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hill, G. E Mitonuclear Ecology (Oxford Univ. Press, 2019).

  • Wolff, J. N., Ladoukakis, E. D., Enríquez, J. A. & Dowling, D. K. Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos. Trans. R. Soc. B 369, 20130443 (2014).

    Article 

    Google Scholar 

  • Koch, R. E. et al. Integrating mitochondrial aerobic metabolism into ecology and evolution. Trends Ecol. Evol. 36, 321–332 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Weir, J. T. Environmental harshness, latitude and incipient speciation. Mol. Ecol. 23, 251–253 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Sugihara, G. Minimal community structure: an explanation of species abundance patterns. Am. Nat. 116, 770–787 (1980).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, F. & Broughton, R. E. Mitochondrial–nuclear interactions: compensatory evolution or variable functional constraint among vertebrate oxidative phosphorylation genes? Genome Biol. Evol. 5, 1781–1791 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Piccinini, G. et al. Mitonuclear coevolution, but not nuclear compensation, drives evolution of OXPHOS complexes in bivalves. Mol. Biol. Evol. 38, 2597–2614 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barreto, F. S. et al. Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nat. Ecol. Evol. 2, 1250–1257 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Kennedy, J. D. et al. Into and out of the tropics: the generation of the latitudinal gradient among New World passerine birds. J. Biogeogr. 41, 1746–1757 (2014).

    Article 

    Google Scholar 

  • Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Evans, K. L. & Gaston, K. J. Can the evolutionary-rates hypothesis explain species–energy relationships? Funct. Ecol. 19, 899–915 (2005).

    Article 

    Google Scholar 

  • Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 2171–2185 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Dowling, D. K., Abiega, K. C. & Arnqvist, G. Temperature-specific outcomes of cytoplasmic–nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61, 194–201 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Freeman, B. G., Weeks, T., Schluter, D. & Tobias, J. A. The latitudinal gradient in rates of evolution for bird beaks, a species interaction trait. Ecol. Lett. 25, 635–646 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Vellend, M. Species diversity and genetic diversity: parallel processes and correlated patterns. Am. Nat. 166, 199–215 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735 (2017).

    Article 

    Google Scholar 

  • Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Araújo, M. S. & Costa-Pereira, R. Latitudinal gradients in intraspecific ecological diversity. Biol. Lett. 9, 20130778 (2013).

  • Derrida, B. & Peliti, L. Evolution in a flat fitness landscape. Bull. Math. Biol. 53, 355–382 (1991).

    Article 

    Google Scholar 

  • de Aguiar, M. A. M. Speciation in the Derrida–Higgs model with finite genomes and spatial populations. J. Phys. A 50, 85602 (2017).

    Article 

    Google Scholar 

  • Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gray, J. S., Bjørgesæter, A. & Ugland, K. I. On plotting species abundance distributions. J. Anim. Ecol. 75, 752–756 (2006).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Inter-annual variability patterns of reef cryptobiota in the central Red Sea across a shelf gradient

    Biological invasions as a selective filter driving behavioral divergence