Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14(10), 1062–1072 (2011).
Google Scholar
Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10(4), 299–314 (2007).
Google Scholar
Kluser, S. & Peduzzi, P. Global pollinator decline: A literature review. Preprint at http://archive-ouverte.unige.ch/unige 32258 (2007).
Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25(6), 345–353 (2010).
Google Scholar
Rhodes, C. J. Pollinator decline—an ecological calamity in the making?. Sci. Prog. 101(2), 121–160 (2018).
Google Scholar
Huang, H. & D’Odorico, P. Critical transitions in plant-pollinator systems induced by positive inbreeding-reward-pollinator feedbacks. Iscience 23(2), 100819 (2020).
Google Scholar
Krishnan, N. et al. Assessing field-scale risks of foliar insecticide applications to monarch butterfly (Danaus plexippus) larvae. Environ. Toxicol. Chem. 39(4), 923–941 (2020).
Google Scholar
Bargar, T. A., Hladik, M. L. & Daniels, J. C. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 8, e8669 (2020).
Google Scholar
Emmel, T. C. & Tucker, J. C. In Mosquito Control Pesticides: Ecological Impacts and Management Alternatives (eds Emmel, T. C. & Tucker, J. C.) 105 (Scientific Publishers, 1991).
Johnson, R. M., Ellis, M. D., Mullin, C. A. & Frazier, M. Pesticides and honey bee toxicity–USA. Apidologie 41(3), 312–331 (2010).
Google Scholar
Olaya-Arenas, P., Scharf, M. E. & Kaplan, I. Do pollinators prefer pesticide-free plants? An experimental test with monarchs and milkweeds. J. Appl. Ecol. 57(10), 2019–2030 (2020).
Google Scholar
Berryman, A. A. What causes population cycles of forest Lepidoptera?. Trends Ecol. Evol. 11(1), 28–32 (1996).
Google Scholar
Elkinton, J. & Boettner, G. Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata North America. Biol. Control 57(2), 277–288 (2012).
Beschta, R. L. & Ripple, W. J. Riparian vegetation recovery in Yellowstone: The first two decades after wolf reintroduction. Biol. Conserv. 198, 93–103 (2016).
Google Scholar
Oberhauser, K. et al. Lacewings wasps and fliesoh my insect enemies take a bite out of monarchs. In Monarchs in a Changing World: Biology and Conservation of an iconic insect (eds Oberhauser, K. S. et al.) 71–82 (Cornell University Press, 2015).
Google Scholar
Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47(1), 361–393 (2002).
Google Scholar
Hermann, S. L., Blackledge, C., Haan, N. L., Myers, A. T. & Landis, D. A. Predators of monarch butterfly eggs and neonate larvae are more diverse than previously recognised. Sci. Rep. 9(1), 1–9 (2019).
Google Scholar
McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S. & Baum, K. A. Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: Distribution patterns and implications for conservation. J. Insect Conserv. 20(2), 223–237 (2016).
Google Scholar
Geest, E. A., Wolfenbarger, L. L. & McCarty, J. P. Recruitment, survival and parasitism of monarch butterflies (Danaus plexippus) in milkweed gardens and conservation areas. J. Insect Conserv. 23(2), 211–224 (2019).
Google Scholar
Stenoien, C. et al. Monarchs in decline: A collateral landscape-level effect of modern agriculture. Insect Sci. 25(4), 528–541 (2018).
Google Scholar
Crone, E. E., Pelton, E. M., Brown, L. M., Thomas, C. C. & Schultz, C. B. Why are monarch butterflies declining in the west? Understanding the importance of multiple correlated drivers. Ecol. Appl. 29(7), e01975 (2019).
Google Scholar
Brower, L. P. et al. Effect of the 2010–2011 drought on the lipid content of monarchs migrating through Texas to overwintering sites in Mexico. In The Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds Oberhauser, K. S. et al.) 117–129 (Cornell University Press, 2015).
Thogmartin, W. E. et al. Monarch butterfly population decline in North America: Identifying the threatening processes. R. Soc. Open Sci. 4(9), 170760 (2017).
Google Scholar
Olaya-Arenas, P. & Kaplan, I. Quantifying pesticide exposure risk for monarch caterpillars on milkweeds bordering agricultural land. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00223 (2019).
Google Scholar
Olaya-Arenas, P., Hauri, K., Scharf, M. E. & Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 10(1), 1–12 (2020).
Google Scholar
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108(2), 662–667 (2011).
Google Scholar
Epstein, L. Fifty years since silent spring. Annu. Rev. Phytopathol. 52, 377–402 (2014).
Google Scholar
Rayor, L. S. Effects of monarch larval host plant chemistry and body size on Polistes wasp predation. In The Monarch Butterfly Biology and Conservation (eds Oberhauser, K. S. & Solensky, M. J.) 39–46 (Cornell University Press, 2004).
Baker, A. M. & Potter, D. A. Invasive paper wasp turns urban pollinator gardens into ecological traps for monarch butterfly larvae. Sci. Rep. 10(1), 1–7 (2020).
Google Scholar
Castellanos, I. & Barbosa, P. Dropping from host plants in response to predators by a polyphagous caterpillar. J. Lepid. Soc. 65(4), 270–272 (2011).
Kessler, S. C. et al. Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550), 74–76 (2015).
Google Scholar
Liao, L.-H., Wu, W.-Y. & Berenbaum, M. R. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food. Sci. Rep. 7(1), 1–8 (2017).
Google Scholar
Musser, R. O. et al. Caterpillar saliva beats plant defences. Nature 416(6881), 599–600 (2002).
Google Scholar
Schmidt, J. & Smith, J. Host examination walk and oviposition site selection of Trichogramma minutum: Studies on spherical hosts. J. Insect Behav. 2(2), 143–171 (1989).
Google Scholar
Ramos, R. S. et al. Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770–778 (2018).
Google Scholar
Chareonviriyaphap, T. et al. Pesticide avoidance behavior in Anopheles albimanus, a malaria vector in the Americas. J. Am. Mosq. Control Assoc. 13(2), 171–183 (1997).
Google Scholar
Nansen, C., Baissac, O., Nansen, M., Powis, K. & Baker, G. Behavioral avoidance-will physiological insecticide resistance level of insect strains affect their oviposition and movement responses?. PLoS ONE 11(3), e0149994 (2016).
Google Scholar
Martini, X., Kincy, N. & Nansen, C. Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci. 68(11), 1471–1477 (2012).
Google Scholar
Bull, D. & Coleman, R. Effects of pesticides on Trichogramma spp. Southwest. Entomol. Suppl. 8, 156–168 (1985).
Google Scholar
Thubru, D., Firake, D. & Behere, G. Assessing risks of pesticides targeting lepidopteran pests in cruciferous ecosystems to eggs parasitoid, Trichogramma brassicae (Bezdenko). Saudi J. Biol. Sci. 25(4), 680–688 (2018).
Google Scholar
Selwood, K. & Zimmer, H. Refuges for biodiversity conservation: A review of the evidence. Biol. Conserv. 245, 108502 (2020).
Google Scholar
Chmiel, J. A., Daisley, B. A., Pitek, A. P., Thompson, G. J. & Reid, G. Understanding the effects of sublethal pesticide exposure on honey bees: A role for probiotics as mediators of environmental stress. Front. Ecol. Evol. 8, 22 (2020).
Google Scholar
Chittka, L., Williams, N., Rasmussen, H. & Thomson, J. Navigation without vision: Bumblebee orientation in complete darkness. Proc. R. Soc. B 266(1414), 45–50 (1999).
Google Scholar
Young, M. W. & Kay, S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715 (2001).
Google Scholar
Mallet, J. Gregarious roosting and home range in Heliconius butterflies. Natl. Geogr. Res. 2(2), 198–215 (1986).
Chang, Y.-M. et al. Roosting site usage, gregarious roosting and behavioral interactions during roost-assembly of two Lycaenidae butterflies. Zool. Stud. 59, e10 (2020).
Google Scholar
Vulinec, K. Collective security aggregation by insects as a defence. In Insect Defences. Adaptive Mechanisms of Prey and Predators (eds Evans, D. L. & Schmidt, J. O.) 251–288 (State University of New York, 1990).
Salcedo, C. Environmental elements involved in communal roosting in Heliconius butterflies (Lepidoptera: Nymphalidae). Environ. Entomol. 39(3), 907–911 (2010).
Google Scholar
Giordano, B. V., McGregor, B. L., Runkel, A. E. IV. & Burkett-Cadena, N. D. Distance diminishes the effect of deltamethrin exposure on the monarch butterfly, Danaus plexippus. J. Am. Mosq. Control Assoc. 36(3), 181–188 (2020).
Google Scholar
Matzrafi, M. Climate change exacerbates pest damage through reduced pesticide efficacy. Pest Manag. Sci. 75(1), 9–13 (2019).
Google Scholar
Hewitt, A. Spray drift: Impact of requirements to protect the environment. Crop Prot. 19(8–10), 623–627 (2000).
Google Scholar
Nail, K. R., Stenoien, C. & Oberhauser, K. S. Immature monarch survival: Effects of site characteristics, density and time. Ann. Entomol. Soc. 108(5), 680–690 (2015).
Google Scholar
Payne, C. C. & Mertens, P. P. Cytoplasmic polyhedrosis viruses. In The Reoviridae (ed. Joklik, K.) 425–504 (Springer, 1983).
Google Scholar
Zalucki, M. P. et al. It’s the first bites that count: Survival of first-instar monarchs on milkweeds. Austral. Ecol. 26(5), 547–555 (2001).
Google Scholar
Salvato, M. Influence of mosquito control chemicals on butterflies (Nymphalidae, Lycaenidae, Hesperiidae) of the lower Florida keys. J. Lepid. Soc. 55(1), 8–14 (2001).
Frey, D. F. & Leong, K. L. Can microhabitat selection or differences in ‘catchability’ explain male-biased sex ratios in overwintering populations of monarch butterflies?. Anim. Behav. 45(5), 1025 (1993).
Google Scholar
Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: An overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4(1), 19–32 (2020).
Google Scholar
Source: Ecology - nature.com