in

Marine subsidies produce cactus forests on desert islands

  • Bartz, K. K. & Naiman, R. J. Effects of Salmon-Borne nutrients on riparian soils and vegetation in Southwest Alaska. Ecosystems 8, 529–545 (2005).

    Article 

    Google Scholar 

  • Erskine, P. D. et al. Subantarctic Macquarie Island—a model ecosystem for studying animal-derived nitrogen sources using 15N natural abundance. Oecologia 117, 187–193 (1998).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Hocking, M. D. & Reimchen, T. E. Salmon species, density and watershed size predict magnitude of marine enrichment in riparian food webs. Oikos 118(9), 1307–1318 (2009).

    Article 

    Google Scholar 

  • Hocking, M. D. & Reynolds, J. D. Impacts of salmon on riparian plant diversity. Science 331, 1609–1612 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hocking, M. D., & Reimchen, T. E. Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. BMC Ecol. 2, 4. https://doi.org/10.1186/1472-6785-2-4 (2002).

  • Bilby, R. E., Fransen, B. R. & Bisson, P. A. Incorporation of nitrogen and carbon from spawning coho salmon into the trophic system of small streams: Evidence from stable isotopes. Can. J. Fish Aquat. Sci. 53, 164–173 (1996).

    Article 

    Google Scholar 

  • Talley, D. M. et al. Research challenges at the land–sea interface. Estuar. Coast. Shelf Sci. 58, 699–702 (2003).

    ADS 
    Article 

    Google Scholar 

  • Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69(2), 340–349 (1988).

    Article 

    Google Scholar 

  • Rowe, J. A., Litton, C. M., Lepczyk, C. A. & Popp, B. N. Impacts of endangered seabirds on nutrient cycling in montane forest ecosystems of Hawai’i. Pac. Sci. 71(4), 495–509 (2017).

    Article 

    Google Scholar 

  • Sanchez-Pinero, F. & Polis, G. A. Bottom-up dynamics of allochthonous input: Direct and indirect effects of seabirds on islands. Ecology 81(11), 3117–3132 (2000).

    Article 

    Google Scholar 

  • Wait, D. A., Aubrey, D. P. & Anderson, W. B. Seabird guano influences on desert islands: Soil chemistry and herbaceous species richness and productivity. J. Arid Environ. 60, 681–695 (2005).

    ADS 
    Article 

    Google Scholar 

  • Stapp, P., Polis, G. A. & Pinero, F. S. Stable isotopes reveal strong marine and El Nino effects on island food webs. Nature 401, 467–469 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Anderson, W. B., Wait, D. A. & Stapp, P. Resources from another place and time: Responses to pulses in a spatially subsidized system. Ecology 89(3), 660–670 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Ellis, J. C. Marine birds on land: A review of plant biomass, species richness, and community composition in seabird colonies. Plant Ecol. 181(2), 227–241 (2005).

    Article 

    Google Scholar 

  • Fukami, T. et al. Above- and below-ground impacts of introduced predators in seabird-dominated island ecosystems. Ecol. Lett. 9, 1299–1307 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: Variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).

    Article 

    Google Scholar 

  • McCauley, D. J., et al., From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409. https://doi.org/10.1038/srep00409 (2012).

  • Young, H. S., McCauley, D. J., Dunbar, R. B. & Dirzo, R. Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc. Natl. Acad. Sci. U.S.A. 107(5), 2072–2077 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lindeboom, H. J. The nitrogen pathway in a Penguin rookery. Ecology 65(1), 269–277 (1984).

    CAS 
    Article 

    Google Scholar 

  • Mizutani, H., Kabaya, Y. & Wada, E. Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochem. J. 19(6), 323–327 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Anderson, W. B. & Polis, G. A. Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118, 324–332 (1999).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).

    Article 

    Google Scholar 

  • Goss, N. S. New and rare birds found breeding on the San Pedro Martir Isle. University of California Press 5, 240–244 (1888).

    Google Scholar 

  • Velarde, E., et al., Nesting seabirds of the Gulf of California’s Offshore islands: Diversity, ecology and conservation. in Biodiversity, Ecosystems, and Conservation in Northern Mexico, Carton, J.-L. E., Ceballos, G., Felger, R. S. Eds. (Oxford University Press, 2005) pp. 452–470.

  • Wilder, B. T., Felger, R. S. & Ezcurra, E. Controls of plant diversity and composition on a desert archipelago. PeerJ 7, e7286. https://doi.org/10.7717/peerj.7286 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellis, J., Fariña, J. & Witman, J. Nutrient transfer from sea to land: the case of gulls and cormorants in the Gulf of Maine. J. Anim. Ecol. 75, 565–574 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Wilder, B. T., Felger, R. S. & Morales, H. R. Succulent plant diversity of the Sonoran Islands, Gulf of California Mexico. Haseltonia 2008(14), 127–160 (2008).

    Article 

    Google Scholar 

  • Lucassen, F. et al. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile—Marine sources and diagenetic effects. PLoS ONE 12(6), e0179440. https://doi.org/10.1371/journal.pone.0179440 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robinson, D. δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16(3), 153–162 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Szpak, P., Longstaffe, F. J., Millaire, J.-F. & White, C. D. Stable isotope biogeochemistry of seabird guano fertilization: Results from growth chamber studies with maize (Zea mays). PLoS ONE 7(3), e33741. https://doi.org/10.1371/journal.pone.0033741 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ezcurra, E., et al. Natural History and Evolution of the World’s Deserts. Global Deserts Outlook. United Nations Environment Programme (UNEP), 1–26 (2006).

  • Yetman, D. The Great Cacti: Ethnobotany and biogeography (University of Arizona Press, 2007).

    Google Scholar 

  • Álvarez-Borrego, S. Physical oceanography. in A New Island Biogeography of the Sea of Cortés, Case, T. J., Cody, M. L., Ezcurra, E. Eds. (Oxford University Press, 2002), pp. 41–59.

  • Douglas, R., Gonzalez-Yajimovich, O., Ledesma-Vazquez, J. & Staines-Urias, F. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quatern. Sci. Rev. 26, 115–129 (2007).

    ADS 
    Article 

    Google Scholar 

  • Urbán, J. Marine mammals of the Gulf of California: An overview of diversity and conservation status. in The Gulf of California: Biodiversity and conservation, R. C. Brusca, Ed. (The University of Arizona Press and the Arizona-Sonora Desert Museum, 2010), pp. 188–209.

  • Hastings, P. A., Findley, L. T., & Van der Heiden, A. M. Fishes of the Gulf of California. in: Brusca, R. C., (eds) The Gulf of California: Biodiversity and conservation 96–118, The University of Arizona Press and the Arizona-Sonora Desert Museum (2010).

    Google Scholar 

  • Polis, G. A., Hurd, S. D., Jackson, C. T. & Sanchez Piñero, F. El Niño effects on the dynamics and control of an Island ecosystem in the Gulf of California. Ecology 78, 1884–1897 (1997).

    Google Scholar 

  • Wilder, B. T. & Felger, R. S. Dwarf giants, guano, and isolation: The flora and vegetation of San Pedro Mártir Island, Gulf of California, Mexico. Proc. San Diego Soc. Nat. Hist. 42, 1–24 (2010).

    Google Scholar 

  • Medel-Narvaez, A., Leon Luz, J. L., Freaner-Martinez, F. & Molina-Freaner, F. Patterns of abundance and population structure of Pachycereus pringlei (Cactaceae), a columnar cactus of the Sonoran Desert. Plant Ecol. 187, 1–14 (2006).

    Article 

    Google Scholar 

  • Felger, R.S., Wilder, B.T. in collaboration with Romero-Morales, H. Plant Life of a Desert Archipelago: Flora of the Sonoran Islands in the Gulf of California. Tucson, University of Arizona Press (2012).

  • Wilkinson, C. E., Hocking, M. D. & Reimchen, T. E. Uptake of salmon-derived nitrogen by mosses and liverworts in Coastal British Columbia. Oikos 108, 85–98 (2005).

    CAS 
    Article 

    Google Scholar 

  • Barrett, K., Wait, D. A. & Anderson, W. B. Small island biogeography in the Gulf of California: Lizards, the subsidized island biogeography hypothesis, and the small island effect. J. Biogeogr. 30, 1575–1581 (2003).

    Article 

    Google Scholar 

  • Young, H. S., McCauley, D. J. & Dirzo, R. Differential responses to guano fertilization among tropical tree species with varying functional traits. Am. J. Bot. 98, 207–214 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Nobel, P. S. Environmental Biology of Agaves and Cacti. Cambridge University Press (2003).

  • Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18(6), 1918–1927 (2012).

    ADS 
    Article 

    Google Scholar 

  • Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).

    CAS 
    Article 

    Google Scholar 

  • Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotope composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48(4), 625–639 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem. Cycles 17(1), 1031. https://doi.org/10.1029/2002GB001903 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Kahmen, A., Wanek, W. & Buchmann, N. Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156, 861–870 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bowen, T. Unknown Island: Seri Indians, Europeans, and San Esteban Island in the Gulf of California (University of New Mexico Press, 2000).

    Google Scholar 

  • Evans, R. D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6(3), 121–126 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dolby, G., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguia-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution surrounding the Gulf of California. J. Southw. 57, 391–455 (2015).

    Article 

    Google Scholar 

  • Case, T. J., Cody, M. L., & Ezcurra, E. A New Island Biogeography of the Sea of Cortés (Oxford University Press, 2002).

    Book 

    Google Scholar 

  • Tershy, B. R. & Breese, D. The birds of San Pedro Mártir Island, Gulf of California Mexico. West. Birds 28, 96–107 (1997).

    Google Scholar 

  • Tershy, B. R., Breese, D. & Croll, D. A. Human perturbations and conservation strategies for San Pedro Mártir Island, Islas de Golfo de California Reserve México. Environ. Conserv. 24, 261–270 (1997).

    Article 

    Google Scholar 

  • Wilder, B. T. Historical biogeography of the Midriff Islands in the Gulf of California, Mexico. Dissertation. Riverside: UC, Riverside (2014).

  • Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Kiljunen, M. et al. A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213–1222 (2006).

    CAS 
    Article 

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).

    Article 

    Google Scholar 

  • R Core Team, R: A language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2022).


  • Source: Ecology - nature.com

    3Q: Why Europe is so vulnerable to heat waves

    Substantial differences in soil viral community composition within and among four Northern California habitats