Sarwar, N. et al. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171, 710–721 (2017).
Google Scholar
Lin, H. M. et al. Cadmium-stress mitigation through gene expression of rice and silicon addition. Plant Growth Regul.: Int. J. Nat. Synthetic Regul. 81(1), 91–101 (2017).
Google Scholar
Pan, F. S. et al. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance. Int. J. Phytorem. 19(1/6), 281–289 (2017).
Google Scholar
Puangprasert, S. & Prueksasit, T. Health risk assessment of airborne Cd, Cu, Ni and Pb for electronic waste dismantling workers in Buriram Province, Thailand. J. Environ. Manag. 252, 109601 (2019).
Google Scholar
Tipu, M. I. et al. Growth and physiology of maize (Zea mays L.) in a nickel-contaminated soil and phytoremediation efficiency using EDTA. J. Plant Growth Regul. 40(2), 774–786 (2021).
Google Scholar
Chaturvedi, N., Dhal, N. K. & Patra, H. K. EDTA and citric acid-mediated phytoextraction of heavy metals from iron ore tailings using Andrographis paniculata: A comparative study. Int. J. Min. Reclam. Environ. 29(1), 33–46 (2015).
Google Scholar
Wang, G. Y. et al. Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility. Sci. Total Environ. 569–570, 557–568 (2016).
Google Scholar
Kołodyńska, D. Cu(II), Zn(II), Co(II) and Pb(II) removal in the presence of the complexing agent of a new generation. Desalination 267(2–3), 175–183 (2011).
Google Scholar
Guo, X. F. et al. Mixed chelators of EDTA, GLDA, and citric acid as washing agent effectively remove Cd, Zn, Pb, and Cu from soils. J. Soils Sediments 18(2), 835–844 (2017).
Wang, X. et al. Subcellular distribution and chemical forms of cadmiun in Bechmeria nivea L. Gaud. Environ. Exp. Bot. 62(3), 389–395 (2008).
Google Scholar
Gallego, S. M. et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environ. Exp. Bot. 83, 33–46 (2012).
Google Scholar
Clemens, S., Aarts, M. G. M., Thomine, S. & Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 18(2), 92–99 (2013).
Google Scholar
Zhou, J. T. et al. Integration of cadmium accumulation, subcellular distribution, and physiological responses to understand cadmium tolerance in apple rootstocks. Front. Plant Sci. 8, 966 (2017).
Google Scholar
Yang, L. P., Zhu, J., Wang, P., Lyu, D. G. & Li, H. F. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicol. Environ. Saf. 160, 10–18 (2018).
Google Scholar
Wang, W. J., Zhang, M. Z. & Liu, J. N. Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer: An integrated consideration. Int. J. Phytorem. 20(11), 1087–1095 (2017).
Google Scholar
Weigel, H. J. & Jäger, H. J. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65(3), 480–482 (1980).
Google Scholar
Khanna, K., Kohli, S. K., Ohri, P., Bhardwaj, R. & Ahmad, P. Agroecotoxicological aspect of Cd in soil–plant system: Uptake, translocation and amelioration strategies. Environ. Sci. Pollut. Res. 29, 30908–30934 (2022).
Google Scholar
Wei, Z. B., Chen, X. H., Wu, Q. T. & Tan, M. Biodegradable chelator GLDA induced remediation of heavy metal contaminated soil in Southeast Jingtian. Environ. Sci. 36(5), 1864–1869 (2015).
Google Scholar
Wang, K., Liu, Y. H., Song, Z. G., Wang, D. & Qiu, W. W. Chelator complexes enhanced Amaranthus hypochondriacus L. phytoremediation efficiency in Cd-contaminated soils. Chemosphere 237, 124480 (2019).
Google Scholar
Meng, N., Wang, M., Chen, L., Zheng, H. & Chen, S. B. Remediation effects of different herbaceous plants intercropping on Cd-contaminated soil. China Environ. Sci. 38(7), 2618–2624 (2018).
Google Scholar
Jones, D. & Willett, V. Experimental evaluation of methods to quantify dissolved organic nitrogen (don) and dissolved organic carbon (doc) in soil. Soil Biol. Biochem. 38(5), 991–999 (2006).
Google Scholar
Su, F. L. et al. The distribution and enrichment characteristics of copper in soil and Phragmites australis of Liao River estuary wetland. Environ. Monit. Assess.: Int. J. 190(6), 1–9 (2018).
Google Scholar
Shahid, M., Dumat, C. & Khalid, S. Reviews of Environmental Contamination and Toxicology Vol. 241, 3–137 (Springer, 2016).
Yuliya, V. et al. Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Sci. Hortic. 192, 89–96 (2015).
Google Scholar
Liu, Q. Q., Chen, Y. H., Shen, Z. G. & Zheng, L. Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol. J. 50(5), 605–611 (2014).
Zhen, S. et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Sci. Total Environ. 770, 145302 (2021).
Google Scholar
Shi, Y. X. et al. Simulation of the absorption, migration and accumulation process of heavy metal elements in soil-crop system. Environ. Sci. 37(10), 3996–4003 (2016).
Yan, X. X. et al. Effect of foliar application of different manganese fertilizers on cadmium accumulation and subcellular distribution in pak choi. J. Agro Environ. Sci. 38(8), 1872–1881 (2019).
He, S., Wu, Q. & He, Z. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93(11), 2782–2788 (2013).
Google Scholar
Li, C. C. et al. Integration of metal chemical forms and subcellular partitioning to understand metal toxicity in two lettuce (Lactuca sativa L.) cultivars. Plant Soil 384(1/2), 201–212 (2014).
Google Scholar
Li, D., He, T., Saleem, M. & He, G. Metalloprotein-specific or critical amino acid residues: Perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress. Int. J. Mol. Sci. 23(3), 1734 (2022).
Google Scholar
Perriguey, J., Sterckeman, T. & Morel, J. L. Effect of rhizosphere and plantrelated factors on the cadmium uptake by maize(Zea mays L.). Environ. Exp. Bot. 63(1/3), 333–341 (2008).
Google Scholar
Dai, S. et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Hum. Ecol. Risk Assess. Int. J. 24(7), 1887–1900 (2018).
Google Scholar
Hou, S., Zheng, N., Tang, L., Ji, X. F. & Li, Y. Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 191(10), 634 (2019).
Google Scholar
Wu, H. J. et al. Effects of Astragalus smicuson cadmium effectiveness in paddy soil and cadmium accumulation in rice plant. Chin. Agric. Sci. Bull. 33(16), 105–111 (2017).
Google Scholar
Jin, P. K., Liu, K. J. & Wang, X. B. Conversion and utilization of slowly biodegradable organic matter. Chin. J. Environ. Eng. 10(5), 2168–2174 (2016).
Google Scholar
Kopáček, J. et al. Factors affecting the leaching of dissolved organic carbon after tree dieback in an unmanaged European mountain forest. Environ. Sci. Technol. 52(11), 6291–6299 (2018).
Google Scholar
Anwar, S. et al. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int. J. Phytorem. 19(6), 505–513 (2017).
Google Scholar
Wu, J. M., Xi, M. & Kong, F. L. Review of researches on the factors influencing the dynamics of dissolved organic carbon in soils. Geol. Rev. 59(5), 953–961 (2013).
Google Scholar
AkzoNobel. Dissolvine GL® Technichal Brochure 1–5 (AkzoNobel Amsterdam, 2010).
Beygi, M. & Jalali, M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337, 1009–1020 (2019).
Google Scholar
Gul, I. et al. Comparative effectiveness of organic and inorganic amendments on cadmium bioavailability and uptake by Pelargonium hortorum. J. Soils Sediments 19(5), 2346–2356 (2019).
Google Scholar
Wang, H., Sun, L. N., Li, H. B. & Sun, T. Y. Effect of different chelators application on Cd accumulation in metal polluted soils by Beta vulgaris var. cicla L. Ecol. Environ. 17(6), 2249–2252 (2008).
Zhang, G. X. et al. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil. Environ. Pollut. 218, 513–522 (2016).
Google Scholar
Gu, M. H. et al. Effects of manganese application on the formation of manganese oxides and cadmium fixation in soil. Ecol. Environ. Sci. 229(2), 360–368 (2020).
Bradl, H. B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 277(1), 1–18 (2004).
Google Scholar
Source: Ecology - nature.com