in

Pigment signatures of algal communities and their implications for glacier surface darkening

  • Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Williamson, C. J. et al. Glacier algae: A dark past and a darker future. Front. Microbiol. 10, 524 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodson, A. J., Mumford, P. N., Kohler, J. & Wynn, P. M. The High Arctic glacial ecosystem: New insights from nutrient budgets. Biogeochemistry 72, 233–256 (2005).

    CAS 

    Google Scholar 

  • Stibal, M., Tranter, M., Telling, J. & Benning, L. G. Speciation, phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry 90, 1–13 (2008).

    CAS 

    Google Scholar 

  • Telling, J. et al. Microbial nitrogen cycling on the Greenland ice sheet. Biogeosciences 9, 2431–2442 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Cook, J. M. et al. Glacier algae accelerate melt rates on the south-western Greenland ice sheet. Cryosphere 14, 309–330 (2020).

    ADS 

    Google Scholar 

  • Yallop, M. L. et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stibal, M. et al. Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 44, 11463–11471 (2017).

    ADS 

    Google Scholar 

  • Di Mauro, B. et al. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep. 10, 1–9 (2020).

    ADS 

    Google Scholar 

  • Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 1–9 (2016).

    ADS 

    Google Scholar 

  • Ganey, G. Q., Loso, M. G., Burgess, A. B. & Dial, R. J. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat. Geosci. 10, 754–759 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15(1), 133–148 (2021).

    ADS 

    Google Scholar 

  • Huovinen, P., Ramírez, J. & Gómez, I. Remote sensing of albedo-reducing snow algae and impurities in the Maritime Antarctica. ISPRS J. Photogramm. Remote Sens. 146, 507–517 (2018).

    ADS 

    Google Scholar 

  • Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Williamson, C. J. et al. Algal photophysiology drives darkening and melt of the Greenland ice sheet. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1918412117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevrollier, L.-A. et al. Light absorption and albedo reduction by pigmented microalgae on snow and ice. J. Glaciol. https://doi.org/10.1017/jog.2022.64 (2022).

    Article 

    Google Scholar 

  • Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga ancylonema alaskana comb. et. stat. nov. and its ecophysiological relatedness to ancylonema nordenskioeldii (zygnematophyceae, streptophyta). Microorganisms 9(5), 1103 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Remias, D. et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79, 638–648 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Williamson, C. J. et al. Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol. Ecol. 94, 1–10 (2018).

    Google Scholar 

  • Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).

    CAS 

    Google Scholar 

  • Leya, T., Rahn, A., Lütz, C. & Remias, D. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol. 67, 432–443 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Müller, T., Bleiß, W., Martin, C. D., Rogaschewski, S. & Fuhr, G. Snow algae from northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32 (1998).

    Google Scholar 

  • Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).

    PubMed 

    Google Scholar 

  • Bidigare, R. R. et al. Evidence for a photoprotective function for secondary carotenoids of snow algae taxonomy, life histories, ecology and geographical habitats and polar regions. J. Phycol. 434, 427–434 (1993).

    CAS 

    Google Scholar 

  • Remias, D. & Lütz, C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: A HPLC approach. Arch. Hydrobiol. Suppl. Algol. Stud. 124, 85–94 (2007).

    CAS 

    Google Scholar 

  • Dial, R. J., Ganey, G. Q. & Skiles, S. M. What color should glacier algae be ? An ecological role for red carbon in the cryosphere. FEMS Microbiol. Ecol. 94(3), 1–9. https://doi.org/10.1093/femsec/fiy007 (2018).

    Article 
    CAS 

    Google Scholar 

  • Uusikivi, J., Vähätalo, A. V., Granskog, M. A. & Sommaruga, R. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnol. Oceanogr. 55, 703–713 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, H., Aubry, C., Zhang, Y. & Song, G. Chromophoric dissolved organic matter (CDOM) in first-year sea ice in the western Canadian Arctic. Mar. Chem. 165, 25–35 (2014).

    CAS 

    Google Scholar 

  • Holzinger, A. & Lütz, C. Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37, 190–207 (2006).

    PubMed 

    Google Scholar 

  • Piiparinen, J. et al. The contribution of mycosporine-like amino acids, chromophoric dissolved organic matter and particles to the UV protection of sea-ice organisms in the Baltic Sea. Photochem. Photobiol. Sci. 14, 1025–1038 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Cook, J. M. et al. Quantifying bioalbedo: A new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 11, 2611–2632 (2017).

    ADS 

    Google Scholar 

  • Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Hoham, R. W. & Ling, H. U. Snow algae: Tile effects of chemical and physical factors on their life cycles and populations. In Journey to Diverse Microbial Worlds (ed. Seckback, J.) 131–145 (Springer, Netherlands, 2000).

    Google Scholar 

  • Procházková, L., Leya, T., Krížková, H. & Nedbalová, L. Sanguina nivaloides and Sanguina aurantia gen. Et spp. Nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95, 1–21 (2019).

    Google Scholar 

  • Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    Google Scholar 

  • Montagnes, D. J. S., Berges, J. A., Harrison, P. J. & Taylor, F. J. R. Estimating carbon, nitrogen, protein and chlorophyll a from volume in marine phytoplankton. Limnol. Oceanogr. 39, 1044–1060 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Schreiber, U., Gademann, R., Ralph, P. J. & Larkum, A. W. D. Assessment of photosynthetic performance of Prochloron in Lissoclinum patella in hospite by chlorophyll fluorescence measurements. Plant Cell Physiol. 38, 945–951 (1997).

    CAS 

    Google Scholar 

  • Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).

    ADS 
    CAS 

    Google Scholar 

  • Silsbe, G. M. & Malkin, S. Y. Package ‘phytotools’: Phytoplankton Production Tools. (2015).

  • Aigner, S., Remias, D., Karsten, U. & Holzinger, A. Unusual phenolic compounds contribute to ecophysiological performance in the purple-colored green alga Zygogonium ericetorum (Zygnematophyceae, Streptophyta) from a high-alpine habitat. J. Phycol. 49, 648–660 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holzinger, A. et al. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: Vegetative cells perform better than pre-akinetes. Protoplasma 255, 1239–1252 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bidigare, R. R., Ondrusek, M. E., Morrow, J. H. & Kiefer, D. A. In-vivo absorption properties of algal pigments. Ocean Opt. X 1302, 290 (1990).

    ADS 

    Google Scholar 

  • Clementson, L. A. & Wojtasiewicz, B. Dataset on the absorption characteristics of extracted phytoplankton pigments. Data Br. 24, 103875 (2019).

    Google Scholar 

  • Bidigare, R. R., Ondrusek, M. E., Morrow, J. H. & Kiefer, D. A. In vivo absorption properties of algal pigments. Ocean Opt. X 1302, 290–302 (1990).

    ADS 

    Google Scholar 

  • Bricaud, A. & Stramski, D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling areaand the Sargasso Sea. Limnol. Oceanogr. 35, 562–582 (1990).

    ADS 
    CAS 

    Google Scholar 

  • Duval, B., Shetty, K. & Thomas, W. H. Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J. Appl. Phycol. 11, 559–566 (2000).

    Google Scholar 

  • Onuma, Y. et al. Observations and modelling of algal growth on a snowpack in north-western Greenland. Cryosphere 12, 2147–2158 (2018).

    ADS 

    Google Scholar 

  • Christner, B. C. et al. Microbial processes in the weathering crust aquifer of a temperate glacier. Cryosphere 12, 3653–3669 (2018).

    ADS 

    Google Scholar 

  • Cook, J. M., Hodson, A. J. & Irvine-Fynn, T. D. L. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 30, 433–446 (2016).

    ADS 

    Google Scholar 

  • Tedstone, A. J. et al. Algal growth and weathering crust state drive variability in western Greenland ice sheet ice albedo. Cryosphere 14, 521–538 (2020).

    ADS 

    Google Scholar 

  • Smith, L. C. et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl. Acad. Sci. U. S. A. 112, 1001–1006 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irvine-Fynn, T. D. L. et al. Storage and export of microbial biomass across the western Greenland ice sheet. Nat. Commun. 12, 1–11 (2021).

    Google Scholar 

  • Cameron, K. A. et al. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. 19, 524–534 (2017).

    PubMed 

    Google Scholar 

  • Stibal, M. et al. Environmental controls on microbial abundance and activity on the Greenland ice sheet: A multivariate analysis approach. Microb. Ecol. 63, 74–84 (2012).

    PubMed 

    Google Scholar 

  • Mernild, S. H., Liston, G. E., Hasholt, B. & Knudsen, N. T. Snow distribution and melt modeling for Mittivakkat Glacier, Ammassalik Island, southeast Greenland. J. Hydrometeorol. 7, 808–824 (2006).

    ADS 

    Google Scholar 

  • Stibal, M., Elster, J., Šabacká, M. & Kaštovská, K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 59, 265–273 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Remias, D., Holzinger, A., Aigner, S. & Lu, C. Ecophysiology and ultrastructure of Ancylonema nordenskioldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). 899–908 (2012). doi:https://doi.org/10.1007/s00300-011-1135-6

  • Remias, D., Holzinger, A. & Lütz, C. Physiology, ultrastructure and habitat of the ice Alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from Glaciers in the European Alps. Phycologia 48, 302–312 (2009).

    Google Scholar 

  • Nakashima, T. et al. Spatial and temporal variations in pigment and species compositions of snow algae on Mt. Tateyama in Toyama prefecture, Japan.. Front. Plant Sci. 12, 1–16 (2021).

    Google Scholar 

  • Remias, D., Albert, A. & Lütz, C. Effects of realistically simulated, elevated UV irradiation on photosynthesis and pigment composition of the alpine snow alga Chlamydomonas nivalis and the arctic soil alga Tetracystis sp. (Chlorophyceae). Photosynthetica 48, 269–277 (2010).

    CAS 

    Google Scholar 

  • Procházková, L., Remias, D., Holzinger, A., Řezanka, T. & Nedbalová, L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol. 44, 105–117 (2021).

    PubMed 

    Google Scholar 

  • Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Biol. 50, 333–359 (1999).

    CAS 

    Google Scholar 

  • Sakshaug, E. & Holm-hansen, O. Photoadaptation in Antarctic phytopfankton: Variations in growth rate, chemical composition and P versus I curves. J. Plankton Res. 8, 459–473 (1986).

    Google Scholar 

  • Malerba, M. E., Palacios, M. M., Palacios Delgado, Y. M., Beardall, J. & Marshall, D. J. Cell size, photosynthesis and the package effect: An artificial selection approach. New Phytol. 219, 449–461 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Wagner, B., Ochs, D. & Bieler, K. Derivatives as antimicrobial agents. Engineering 8, 240–244 (2011).

    Google Scholar 

  • Perini, L. et al. Darkening of the Greenland ice sheet: Fungal abundance and diversity are associated with algal bloom. Front. Microbiol. 10, 557 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perini, L. et al. Interactions of fungi and algae from the Greenland ice sheet. Microb. Ecol. https://doi.org/10.1007/s00248-022-02033-5 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Taskjelle, T. et al. Spectral albedo and transmittance of thin young Arctic sea ice. J. Geophys. Res. Ocean. 121, 540–553 (2015).

    ADS 

    Google Scholar 

  • Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Smith, H., Dieser, M., McKnight, D., SanClements, M. & Foreman, C. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments. FEMS Microbiol. Ecol. 94(7), fiy090 (2018).

    CAS 

    Google Scholar 

  • Kirk, J. T. O. A theoretical analysis of the contributino of algal cells to the attenuation of light within natural waters. New Phytol. 77, 341–358 (1976).

    Google Scholar 

  • Morel, A. & Bricaud, A. Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep Sea Res. Part A. Oceanogr. Res. Pap. 28, 1375–1393 (1981).

    ADS 

    Google Scholar 

  • Stuart, V., Sathyendranath, S., Platt, T., Maass, H. & Irwin, B. D. Pigments and species composition of natural phytoplankton populations: Effect on the absorption spectra. J. Plankton Res. 20, 187–217 (1998).

    CAS 

    Google Scholar 

  • Kirk, J. Light and Photosynthesis in Aquatic Environment (University Press, 1983).

    Google Scholar 

  • Nelson, N. B., Prezelin, B. B. & Bidigare, R. R. Phytoplankton light absorption and the package effect in California coastal waters. Mar. Ecol. Prog. Ser. 94, 217–227 (1993).

    ADS 

    Google Scholar 

  • Holzinger, A., Allen, M. C. & Deheyn, D. D. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. J. Photochem. Photobiol. B Biol. https://doi.org/10.1016/j.jphotobiol.2016.07.001 (2016).

    Article 

    Google Scholar 

  • Anesio, A. M. et al. Monitoring glacial algae and impurities on the Greenland Ice Sheet. Aarhus Univ. DCE – Danish Cent. Environ. Energy, Sci. Rep. No. 489 26 (2022).

  • QGIS.org, %Y. QGIS Geographic Information System. QGIS Association. http://www.qgis.org.


  • Source: Ecology - nature.com

    “Drawing Together” is awarded Norman B. Leventhal City Prize

    Finding community in high-energy-density physics